Descripteur
Documents disponibles dans cette catégorie (1063)


Etendre la recherche sur niveau(x) vers le bas
A graph-based approach for representing addresses in geocoding / Chen Zhang in Computers, Environment and Urban Systems, vol 100 (March 2023)
![]()
[article]
Titre : A graph-based approach for representing addresses in geocoding Type de document : Article/Communication Auteurs : Chen Zhang, Auteur ; Biao He, Auteur ; Renzhong Guo, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101937 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement d'adresses
[Termes IGN] base de données d'adresses
[Termes IGN] géocodage par adresse postale
[Termes IGN] graphe
[Termes IGN] stockage de données
[Termes IGN] toponymeRésumé : (auteur) Addresses, one of the most important geographical reference systems in natural languages, are usually used to search spatial objects in daily life. Geocoding concatenates text with georeferenced coordinates and is an essential middleware service in geographic information applications. Despite its importance, geocoding remains challenging with only text as input, hindering text matching in reference databases without the specific text. To optimize the storage and retrieval of addresses in databases, this work proposes a graph-based approach for representing addresses. The approach clarifies the characteristics of relative concepts, designs a graph structure and identifies modelling strategies. Furthermore, a schema is proposed to perform address matching and toponym disambiguation using an address graph. The model is implemented on a graph database, and experimental tasks are employed to demonstrate its effectiveness. The approach provides a new reference for developers when creating address databases. Numéro de notice : A2023-126 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101937 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101937 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102505
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101937[article]Geographic named entity recognition by employing natural language processing and an improved BERT model / Liufeng Tao in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
![]()
[article]
Titre : Geographic named entity recognition by employing natural language processing and an improved BERT model Type de document : Article/Communication Auteurs : Liufeng Tao, Auteur ; Zhong Xie, Auteur ; Dexin Xu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Chine
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données publiques
[Termes IGN] jeu de données
[Termes IGN] reconnaissance de caractères
[Termes IGN] reconnaissance de noms
[Termes IGN] test de performance
[Termes IGN] toponyme
[Termes IGN] traitement du langage naturelRésumé : (auteur) Toponym recognition, or the challenge of detecting place names that have a similar referent, is involved in a number of activities connected to geographical information retrieval and geographical information sciences. This research focuses on recognizing Chinese toponyms from social media communications. While broad named entity recognition methods are frequently used to locate places, their accuracy is hampered by the many linguistic abnormalities seen in social media posts, such as informal sentence constructions, name abbreviations, and misspellings. In this study, we describe a Chinese toponym identification model based on a hybrid neural network that was created with these linguistic inconsistencies in mind. Our method adds a number of improvements to a standard bidirectional recurrent neural network model to help with location detection in social media messages. We demonstrate the results of a wide-ranging evaluation of the performance of different supervised machine learning methods, which have the natural advantage of avoiding human design features. A set of controlled experiments with four test datasets (one constructed and three public datasets) demonstrates the performance of supervised machine learning that can achieve good results on the task, significantly outperforming seven baseline models. Numéro de notice : A2022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11120598 Date de publication en ligne : 28/11/2022 En ligne : https://doi.org/10.3390/ijgi11120598 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102178
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 598[article]The limits of GIS implementation in education: A systematic review / Veronika Bernhäuserová in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
![]()
[article]
Titre : The limits of GIS implementation in education: A systematic review Type de document : Article/Communication Auteurs : Veronika Bernhäuserová, Auteur ; Lenka Havelková, Auteur ; Kateřina Hátlová, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 592 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes IGN] apprentissage (cognition)
[Termes IGN] formation
[Termes IGN] géographie
[Termes IGN] géomatique
[Termes IGN] implémentation (informatique)
[Termes IGN] système d'information géographique
[Termes IGN] terminologieRésumé : (auteur) Despite the extensive discussion on the educational potential of GIS and the changes made in the curricula in many countries, the implementation of GIS in classrooms has still been relatively slow. This is because of variables limiting the process of GIS implementation in lessons. Although research into the limits of GIS implementation has been carried out quite extensively, there is a need for knowledge systematisation in the field. Therefore, the presented systematic review of 34 empirical studies addresses this need and pays attention to the methodological approaches used to research the limits, the identified limits of GIS implementation, their categorisation, and any temporal trends in their occurrence. Altogether, the analysed studies identified 68 limits of GIS implementation in education using mainly quantitative methodology (especially the questionnaire), with utmost attention paid to teachers as participants. These limits then formed complex categorisation that distinguishes elementarily between the limits related to humans and resources. The most frequent and variable category of limits was teachers followed by technology, while both kept their positions in all periods. The systematisation of the research enables the formulation of implications for educational and geoinformatics practice and recommendations for future research. Numéro de notice : A2022-875 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11120592 Date de publication en ligne : 26/11/2022 En ligne : https://doi.org/10.3390/ijgi11120592 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102174
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 592[article]A machine learning approach for detecting rescue requests from social media / Zheye Wang in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
![]()
[article]
Titre : A machine learning approach for detecting rescue requests from social media Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Nina S.N. Lam, Auteur ; Mingxuan Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 570 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] code postal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] filtrage d'information
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] terminologie
[Termes IGN] TwitterRésumé : (auteur) Hurricane Harvey in 2017 marked an important transition where many disaster victims used social media rather than the overloaded 911 system to seek rescue. This article presents a machine-learning-based detector of rescue requests from Harvey-related Twitter messages, which differentiates itself from existing ones by accounting for the potential impacts of ZIP codes on both the preparation of training samples and the performance of different machine learning models. We investigate how the outcomes of our ZIP code filtering differ from those of a recent, comparable study in terms of generating training data for machine learning models. Following this, experiments are conducted to test how the existence of ZIP codes would affect the performance of machine learning models by simulating different percentages of ZIP-code-tagged positive samples. The findings show that (1) all machine learning classifiers except K-nearest neighbors and Naïve Bayes achieve state-of-the-art performance in detecting rescue requests from social media; (2) using ZIP code filtering could increase the effectiveness of gathering rescue requests for training machine learning models; (3) machine learning models are better able to identify rescue requests that are associated with ZIP codes. We thereby encourage every rescue-seeking victim to include ZIP codes when posting messages on social media. This study is a useful addition to the literature and can be helpful for first responders to rescue disaster victims more efficiently. Numéro de notice : A2022-846 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110570 Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.3390/ijgi11110570 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102081
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 570[article]Topographic descriptors on the early Dutch charts of the antipodes / Jan Tent in International journal of cartography, vol 8 n° 3 (November 2022)
![]()
[article]
Titre : Topographic descriptors on the early Dutch charts of the antipodes Type de document : Article/Communication Auteurs : Jan Tent, Auteur Année de publication : 2022 Article en page(s) : pp 272 - 290 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes IGN] Australie
[Termes IGN] carte ancienne
[Termes IGN] descripteur
[Termes IGN] explorateur
[Termes IGN] littoral
[Termes IGN] néerlandais (langue)
[Termes IGN] nomenclature
[Termes IGN] Nouvelle-Zélande
[Termes IGN] Papouasie-Nouvelle-Guinée
[Termes IGN] toponymeRésumé : (auteur) The early Dutch charts of coastal Australia, New Zealand and New Guinea are peppered not only with toponyms but also with topographic descriptors. The latter were intended as navigational aids and warnings for future navigators. Naming or describing a geographic feature is a method of distinguishing it from the surrounding topography. At times some topographic descriptors have been considered or interpreted as toponyms. This article explores whether there are any means of determining the difference between the two, and what may have been initially intended by the explorers who entered them on their manuscript charts. Reasons for the relevance of making such a distinction are also considered. Numéro de notice : A2022-746 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/TOPONYMIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2020.1859937 Date de publication en ligne : 11/02/2021 En ligne : https://doi.org/10.1080/23729333.2020.1859937 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101731
in International journal of cartography > vol 8 n° 3 (November 2022) . - pp 272 - 290[article]"Process toponymy": A GIS-based community-engaged approach to indigenous dynamic place naming systems and vernacular cartography / Nadezhda Mamontova in Cartographica, vol 57 n° 3 (September 2022)
PermalinkQuality assessment of volunteered geographic information for outdoor activities: an analysis of OpenStreetMap data for names of peaks in Japan / Jun Yamashita in Geo-spatial Information Science, vol 25 n° inconnu ([01/08/2022])
PermalinkGeographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
PermalinkChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network / Qinjun Qiu in Transactions in GIS, vol 26 n° 3 (May 2022)
PermalinkThe effect of map label language on the visual search of cartographic point symbols / Paweł Cybulski in Cartography and Geographic Information Science, vol 49 n° 3 (May 2022)
PermalinkLes noms de lieux mentionnés dans des récits de vie de républicains espagnols : distribution géographique et perceptions associées / Laurence Jolivet in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
PermalinkGazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
PermalinkGenerating geographical location descriptions with spatial templates: a salient toponym driven approach / Mark M. Hall in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
PermalinkDeep learning for toponym resolution: Geocoding based on pairs of toponyms / Jacques Fize in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
PermalinkA semantics-based approach for simplifying IFC building models to facilitate the use of BIM models in GIS / Junxiang Zhu in Remote sensing, vol 13 n° 22 (November-2 2021)
Permalink