Descripteur
Documents disponibles dans cette catégorie (395)



Etendre la recherche sur niveau(x) vers le bas
Extracting built-up land area of airports in China using Sentinel-2 imagery through deep learning / Fanxuan Zeng in Geocarto international, vol 37 n° 25 ([01/12/2022])
![]()
[article]
Titre : Extracting built-up land area of airports in China using Sentinel-2 imagery through deep learning Type de document : Article/Communication Auteurs : Fanxuan Zeng, Auteur ; Xin Wang, Auteur ; Mengqi Zha, Auteur Année de publication : 2022 Article en page(s) : pp 7753 - 7773 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéroport
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] image Sentinel-MSIRésumé : (auteur) In China, airports have a profound impact on people’s lives, and understanding their dimensions has great significance for research and development. However, few existing airport databases contain such details, which can be reflected indirectly by the built-up land in the airport. In this study, a deep learning-based method was used for extraction of built-up land of airports in China using Sentinel-2 imagery and for further estimating their area. Here, a benchmark generation method is introduced by fusing two reference maps and cropping images into patches. Following this, a series of experiments were conducted to evaluate the network architectures and select the positive impact bands in Sentinel-2 imagery. A well-trained model was used to extract the built-up land for China airports, and the relationship between China airports’ built-up land and the carrying capacity of air transportation was further analysed. Results show that ResUNet-a outperformed U-Net, ResUNet, and SegNet, and the B2, B4, B6, B11, and B12 bands of Sentinel-2 had a positive impact on built-up land extraction. A well-trained model with an overall accuracy of 0.9423 and an F1 score of 0.9041 and 434 China airports’ built-up land was extracted. The four most developed airports are located in Beijing, Shanghai, and Guangzhou, which matches China’s political and economic development. The area of built-up land influenced the passenger throughput and aircraft movements. The total area influenced the cargo throughput, and we found a certain correlation among the built-up land, carrying capacity, and nighttime light. Numéro de notice : A2022-929 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1983034 Date de publication en ligne : 01/10/2021 En ligne : https://doi.org/10.1080/10106049.2021.1983034 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102662
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7753 - 7773[article]Semantic integration of OpenStreetMap and CityGML with formal concept analysis / Somayeh Ahmadian in Transactions in GIS, vol 26 n° 8 (December 2022)
![]()
[article]
Titre : Semantic integration of OpenStreetMap and CityGML with formal concept analysis Type de document : Article/Communication Auteurs : Somayeh Ahmadian, Auteur ; Parham Pahlavani, Auteur Année de publication : 2022 Article en page(s) : pp 3349 - 3373 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de groupement
[Termes IGN] bâtiment
[Termes IGN] CityGML
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données localisées des bénévoles
[Termes IGN] information sémantique
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des données
[Termes IGN] réseau sémantiqueRésumé : (auteur) Volunteered geographic information (VGI) provides geometric and descriptive sources of geospatial data. VGI exchange, reuse, and integration are serious challenges due to the subjective contribution process, lack of organization, and redundancy. This study aims to enhance the quality of VGI semantic data by presenting a new approach to integrating and formalizing the VGI semantic knowledge using formal concept analysis. The proposed approach is assessed using the building tags in OpenStreetMap (OSM) and CityGML. The alignment process discovers the conceptual overlap between the categories of Amenity (Others), Office, and Man-Made in Map Features (OSM) and Business and Trade, Recreation, Sport, and Industry in AbstractBuilding (CityGML). The k-means clustering of the results illustrated that class, usage/function, address, wheelchair, and website/wikidata/wikipedia are significant attributes to describe building categories. Moreover, results showed that the analysis of frequent itemsets and cluster characteristics provides significant information about custom tags in OSM's editing tools. Numéro de notice : A2022-909 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13006 Date de publication en ligne : 02/12/2022 En ligne : https://doi.org/10.1111/tgis.13006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102347
in Transactions in GIS > vol 26 n° 8 (December 2022) . - pp 3349 - 3373[article]Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration / Haishan Xia in Sustainable Cities and Society, vol 84 (September 2022)
![]()
[article]
Titre : Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration Type de document : Article/Communication Auteurs : Haishan Xia, Auteur ; Zishuo Liu, Auteur ; Maria Efremochkina, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104009 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] bibliométrie
[Termes IGN] CityGML
[Termes IGN] format Industry foudation classes IFC
[Termes IGN] intégration de données
[Termes IGN] jumeau numérique
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] ontologie
[Termes IGN] planification urbaine
[Termes IGN] système d'information géographique
[Termes IGN] ville durable
[Termes IGN] ville intelligenteRésumé : (auteur) Geographic information system (GIS) data provide geospatial data on cities and spatial analysis functions that are essential for urban design. Building information modeling (BIM) includes a digital entity of construction, a passive presentation of micro-digital information on real entities, and an active application of models in the entire life cycle realization of the architecture, engineering, and construction industries. A combination of these technologies could provide a core technology for the urban digital twin to support sustainable smart city design. Through an insightful literature review, this paper summarizes the different disciplinary classifications of GIS and BIM functional integration, distills the value of data, and discusses the ontology-based data integration approach that GIS and BIM should take in the future to conduct research on integration applications in smart cities. To verify this view, keyword analysis, co-country analysis, and co-citation and coupling analyses are conducted using CiteSpace. GIS and BIM integration has attracted much attention. However, a professional disconnect and fragmented composition pose challenges in the field of GIS and BIM integration. Future research should focus on smart city planning, updating, management; ontology-based GIS and BIM data integration platform; and operation; and the collaborative management of urban rail transportation engineering. Numéro de notice : A2022-543 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104009 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101118
in Sustainable Cities and Society > vol 84 (September 2022) . - n° 104009[article]Feature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images / Hanwen Xu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
![]()
[article]
Titre : Feature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images Type de document : Article/Communication Auteurs : Hanwen Xu, Auteur ; Xinming Tang, Auteur ; Bo Ai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4411915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] segmentation multi-échelle
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Very-high-resolution (VHR) remote sensing images contain various multiscale objects, such as large-scale buildings and small-scale cars. However, these multiscale objects cannot be considered simultaneously in the widely used backbones with a large downsampling factor (e.g., VGG-like and ResNet-like), resulting in the appearance of various context aggregation approaches, such as fusing low-level features and attention-based modules. To alleviate this problem caused by backbones with a large downsampling factor, we propose a feature-selection high-resolution network (FSHRNet) based on an observation: if the features maintain high resolution throughout the network, a high precision segmentation result can be obtained by only using a 1× 1 convolution layer with no need for complex context aggregation modules. Specifically, the backbone of FSHRNet is a multibranch structure similar to HRNet where the high-resolution branch is the principal line. Then, a lightweight dynamic weight module, named the feature-selection convolution (FSConv) layer, is presented to fuse multiresolution features, allowing adaptively feature selection based on the characteristic of objects. Finally, a specially designed 1× 1 convolution layer derived from hypersphere embedding is used to produce the segmentation result. Experiments with other widely used methods show that the proposed FSHRNet obtains competitive performance on the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the iSAID dataset. Numéro de notice : A2022-559 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3183144 En ligne : https://doi.org/10.1109/TGRS.2022.3183144 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101184
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 4411915[article]3D modeling of urban area based on oblique UAS images - An end-to-end pipeline / Valeria-Ersilia Oniga in Remote sensing, vol 14 n° 2 (January-2 2022)
![]()
[article]
Titre : 3D modeling of urban area based on oblique UAS images - An end-to-end pipeline Type de document : Article/Communication Auteurs : Valeria-Ersilia Oniga, Auteur ; Ana-Ioana Breaban, Auteur ; Norbert Pfeifer, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 422 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] Bâti-3D
[Termes IGN] CityGML
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] image aérienne oblique
[Termes IGN] image captée par drone
[Termes IGN] indice de végétation
[Termes IGN] lasergrammétrie
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] point d'appui
[Termes IGN] Roumanie
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) 3D modelling of urban areas is an attractive and active research topic, as 3D digital models of cities are becoming increasingly common for urban management as a consequence of the constantly growing number of people living in cities. Viewed as a digital representation of the Earth’s surface, an urban area modeled in 3D includes objects such as buildings, trees, vegetation and other anthropogenic structures, highlighting the buildings as the most prominent category. A city’s 3D model can be created based on different data sources, especially LiDAR or photogrammetric point clouds. This paper’s aim is to provide an end-to-end pipeline for 3D building modeling based on oblique UAS images only, the result being a parametrized 3D model with the Open Geospatial Consortium (OGC) CityGML standard, Level of Detail 2 (LOD2). For this purpose, a flight over an urban area of about 20.6 ha has been taken with a low-cost UAS, i.e., a DJI Phantom 4 Pro Professional (P4P), at 100 m height. The resulting UAS point cloud with the best scenario, i.e., 45 Ground Control Points (GCP), has been processed as follows: filtering to extract the ground points using two algorithms, CSF and terrain-mark; classification, using two methods, based on attributes only and a random forest machine learning algorithm; segmentation using local homogeneity implemented into Opals software; plane creation based on a region-growing algorithm; and plane editing and 3D model reconstruction based on piece-wise intersection of planar faces. The classification performed with ~35% training data and 31 attributes showed that the Visible-band difference vegetation index (VDVI) is a key attribute and 77% of the data was classified using only five attributes. The global accuracy for each modeled building through the workflow proposed in this study was around 0.15 m, so it can be concluded that the proposed pipeline is reliable. Numéro de notice : A2022-101 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.3390/rs14020422 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.3390/rs14020422 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99566
in Remote sensing > vol 14 n° 2 (January-2 2022) . - n° 422[article]PermalinkDeep image translation with an affinity-based change prior for unsupervised multimodal change detection / Luigi Tommaso Luppino in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
PermalinkDeep learning based 2D and 3D object detection and tracking on monocular video in the context of autonomous vehicles / Zhujun Xu (2022)
PermalinkEffective triplet mining improves training of multi-scale pooled CNN for image retrieval / Federico Vaccaro in Machine Vision and Applications, vol 33 n° 1 (January 2022)
PermalinkRemise en forme des données géographiques des biotopes en milieu ouvert du Luxembourg / Alexandre Nghien (2022)
PermalinkRepresenting vector geographic information as a tensor for deep learning based map generalisation / Azelle Courtial (2022)
PermalinkPermalinkAnalyzing contextual linking of heterogeneous information models from the domains BIM and UIM / Stefan F. Beck in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
PermalinkVGI3D: an interactive and low-cost solution for 3D building modelling from street-level VGI images / Chaoquan Zhang in Journal of Geovisualization and Spatial Analysis, vol 5 n° 2 (December 2021)
PermalinkA semantics-based approach for simplifying IFC building models to facilitate the use of BIM models in GIS / Junxiang Zhu in Remote sensing, vol 13 n° 22 (November-2 2021)
Permalink