Descripteur
Documents disponibles dans cette catégorie (53)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Histograms of oriented mosaic gradients for snapshot spectral image description / Lulu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
[article]
Titre : Histograms of oriented mosaic gradients for snapshot spectral image description Type de document : Article/Communication Auteurs : Lulu Chen, Auteur ; Yong-Qiang Zhao, Auteur ; Jonathan Cheung-Wai Chan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 79 - 93 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] capteur multibande
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre spectral
[Termes IGN] histogramme
[Termes IGN] image proche infrarouge
[Termes IGN] image spectrale
[Termes IGN] mosaïque d'images
[Termes IGN] poursuite de cible
[Termes IGN] temps instantanéRésumé : (auteur) This paper presents a feature descriptor using Histogram of Oriented Mosaic Gradient (HOMG) that extracts spatial-spectral features directly from mosaic spectral images. Spectral imaging utilizes unique spectral signatures to distinguish objects of interest in the scene more discriminatively. Snapshot spectral cameras equipped with spectral filter arrays (SFAs) capture spectral videos in real time, making it possible to detect/track fast moving targets based on spectral imaging. How to effectively extract the spatial-spectral feature directly from the mosaic spectral images acquired by snapshot spectral cameras is a core issue for detection/tracking. So far, there is a lack of comprehensive and in-depth research on this issue. To this end, this paper proposed a new spatial-spectral feature extractor for mosaic spectral images. The proposed scheme finds two forms of SFA neighborhood (SFAN) to construct a feature extractor suitable for any SFA structure. Exploiting the spatial-spectral correlation in two SFANs, we design six mosaic spatial-spectral gradient operators to compute spatial-spectral gradient maps (SGMs). HOMG descriptors are constructed using the magnitude and orientation of SGMs. The effectiveness and generalizability of the proposed method have been verified with object tracking experiments. Compared to the state-of-the-art feature descriptors, HOMG ranked first on two datasets captured with snapshot spectral camera with different SFAs, achieving a gain of 3.9% and 5.9% in average success rate over the second-ranked feature. Numéro de notice : A2022-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.10.018 Date de publication en ligne : 12/11/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.10.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99058
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 79 - 93[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data / Nikos Georgopoulos in Remote sensing, vol 13 n° 23 (December-1 2021)
[article]
Titre : Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data Type de document : Article/Communication Auteurs : Nikos Georgopoulos, Auteur ; Ioannis Z. Gitas, Auteur ; Alexandra Stefanidou, Auteur ; Lauri Korhonen, Auteur ; Dimitris G. Stavrakoudis, Auteur Année de publication : 2021 Article en page(s) : n° 4827 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Abies (genre)
[Termes IGN] biomasse aérienne
[Termes IGN] capteur multibande
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt inéquienne
[Termes IGN] Grèce
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] montagne
[Termes IGN] Pinophyta
[Termes IGN] régression
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (auteur) Stem biomass is a fundamental component of the global carbon cycle that is essential for forest productivity estimation. Over the last few decades, Light Detection and Ranging (LiDAR) has proven to be a useful tool for accurate carbon stock and biomass estimation in various biomes. The aim of this study was to investigate the potential of multispectral LiDAR data for the reliable estimation of single-tree total and barkless stem biomass (TSB and BSB) in an uneven-aged structured forest with complex topography. Destructive and non-destructive field measurements were collected for a total of 67 dominant and co-dominant Abies borisii-regis trees located in a mountainous area in Greece. Subsequently, two allometric equations were constructed to enrich the reference data with non-destructively sampled trees. Five different regression algorithms were tested for single-tree BSB and TSB estimation using height (height percentiles and bicentiles, max and average height) and intensity (skewness, standard deviation and average intensity) LiDAR-derived metrics: Generalized Linear Models (GLMs), Gaussian Process (GP), Random Forest (RF), Support Vector Regression (SVR) and Extreme Gradient Boosting (XGBoost). The results showcased that the RF algorithm provided the best overall predictive performance in both BSB (i.e., RMSE = 175.76 kg and R2 = 0.78) and TSB (i.e., RMSE = 211.16 kg and R2 = 0.65) cases. Our work demonstrates that BSB can be estimated with moderate to high accuracy using all the tested algorithms, contrary to the TSB, where only three algorithms (RF, SVR and GP) can adequately provide accurate TSB predictions due to bark irregularities along the stems. Overall, the multispectral LiDAR data provide accurate stem biomass estimates, the general applicability of which should be further tested in different biomes and ecosystems. Numéro de notice : A2021-953 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13234827 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.3390/rs13234827 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99955
in Remote sensing > vol 13 n° 23 (December-1 2021) . - n° 4827[article]Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and satellite (MODIS, Sentinel-2) remote sensing / Shangharsha Thapa in Remote sensing, vol 13 n° 8 (April-2 2021)
[article]
Titre : Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and satellite (MODIS, Sentinel-2) remote sensing Type de document : Article/Communication Auteurs : Shangharsha Thapa, Auteur ; Virginia Garcia Millan, Auteur ; Lars Eklundh, Auteur Année de publication : 2021 Article en page(s) : n° 1597 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse multiéchelle
[Termes IGN] capteur multibande
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelle
[Termes IGN] Suède
[Termes IGN] surveillance forestière
[Termes IGN] variation saisonnièreRésumé : (auteur) The monitoring of forest phenology based on observations from near-surface sensors such as Unmanned Aerial Vehicles (UAVs), PhenoCams, and Spectral Reflectance Sensors (SRS) over satellite sensors has recently gained significant attention in the field of remote sensing and vegetation phenology. However, exploring different aspects of forest phenology based on observations from these sensors and drawing comparatives from the time series of vegetation indices (VIs) still remains a challenge. Accordingly, this research explores the potential of near-surface sensors to track the temporal dynamics of phenology, cross-compare their results against satellite observations (MODIS, Sentinel-2), and validate satellite-derived phenology. A time series of Normalized Difference Vegetation Index (NDVI), Green Chromatic Coordinate (GCC), and Normalized Difference of Green & Red (VIgreen) indices were extracted from both near-surface and satellite sensor platforms. The regression analysis between time series of NDVI data from different sensors shows the high Pearson’s correlation coefficients (r > 0.75). Despite the good correlations, there was a remarkable offset and significant differences in slope during green-up and senescence periods. SRS showed the most distinctive NDVI profile and was different to other sensors. PhenoCamGCC tracked green-up of the canopy better than the other indices, with a well-defined start, end, and peak of the season, and was most closely correlated (r > 0.93) with the satellites, while SRS-based VIgreen accounted for the least correlation (r = 0.58) against Sentinel-2. Phenophase transition dates were estimated and validated against visual inspection of the PhenoCam data. The Start of Spring (SOS) and End of Spring (EOS) could be predicted with an accuracy of Numéro de notice : A2021-382 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081597 Date de publication en ligne : 20/04/2021 En ligne : https://doi.org/10.3390/rs13081597 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97633
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1597[article]Individual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data / Sitinor Atikah Nordin in Geocarto international, vol 34 n° 11 ([15/08/2019])
[article]
Titre : Individual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data Type de document : Article/Communication Auteurs : Sitinor Atikah Nordin, Auteur ; Zulkiflee Abd Latif, Auteur ; Hamdan Omar, Auteur Année de publication : 2019 Article en page(s) : pp 1218 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] analyse multibande
[Termes IGN] Asie du sud-est
[Termes IGN] bande rouge
[Termes IGN] canopée
[Termes IGN] capteur hyperspectral
[Termes IGN] carte forestière
[Termes IGN] forêt tropicale
[Termes IGN] image hyperspectrale
[Termes IGN] image proche infrarouge
[Termes IGN] image satellite
[Termes IGN] niveau de gris (image)
[Termes IGN] réflectance végétale
[Termes IGN] segmentation d'image
[Termes IGN] teneur en chlorophylle des feuilles
[Termes IGN] tourbièreRésumé : (Auteur) Individual tree crown segmentation is important step for deriving various information for fine-scale analysis of ecological process. However, only several studies have applied tree crown segmentation in tropical forest ecosystems, especially in mixed peat swamp forests. In this study, hyperspectral data were used to detect changes in the biochemical and biophysical characteristics, which are important factors for tree crown segmentation. Principal Component Analysis method was performed to investigate its influence on crown segmentation. Visually Selected PCs, 160 PCs and 160 Spectral Bands image were used and two segmentation techniques; Watershed Transformation and Region Growing segmentation were applied on those images. The highest accuracy was achieved for the crown segmentation is using Region Growing segmentation, based on 1:1 measurement, D value and RMSE value. The results obtained from 160 PCs image using region growing algorithm shows better accuracy with D value of 0.2 (80% accuracy, 20% error) and RMSE of 9.9 m2. Numéro de notice : A2019-463 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1475511 Date de publication en ligne : 24/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1475511 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93605
in Geocarto international > vol 34 n° 11 [15/08/2019] . - pp 1218 - 1236[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction / Maximilian Brell in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction Type de document : Article/Communication Auteurs : Maximilian Brell, Auteur ; Karl Segl, Auteur ; Luis Guanter, Auteur ; Bodo Bookhagen, Auteur Année de publication : 2019 Article en page(s) : pp 200 - 214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] capteur hyperspectral
[Termes IGN] classification orientée objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] impulsion laser
[Termes IGN] niveau de détail
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Remote Sensing technologies allow to map biophysical, biochemical, and earth surface parameters of the land surface. Of especial interest for various applications in environmental and urban sciences is the combination of spectral and 3D elevation information. However, those two data streams are provided separately by different instruments, namely airborne laser scanner (ALS) for elevation and a hyperspectral imager (HSI) for high spectral resolution data. The fusion of ALS and HSI data can thus lead to a single data entity consistently featuring rich structural and spectral information. In this study, we present the application of fusing the first pulse return information from ALS data at a sub-decimeter spatial resolution with the lower-spatial resolution hyperspectral information available from the HSI into a hyperspectral point cloud (HSPC). During the processing, a plausible hyperspectral spectrum is assigned to every first-return ALS point. We show that the complementary implementation of spectral and 3D information at the point-cloud scale improves object-based classification and information extraction schemes. This improvements have great potential for numerous land-cover mapping and environmental applications. Numéro de notice : A2019-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.022 Date de publication en ligne : 06/02/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.022 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92448
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 200 - 214[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt An evaluation of reflectance calibration methods for UAV spectral imagery / Jarrod Edwards in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)PermalinkRadiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols / Sen Cao in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)PermalinkAnalysis and modelling of remote sensing reflectance during anoxic crisis in the Thau lagoon using satellite images / Manchun Lei (2019)PermalinkTERRISCOPE, une nouvelle plateforme mutualisée de recherche en télédétection optique à partir d’avions et de drones / Yannick Boucher (2018)PermalinkHierarchically exploring the width of spectral bands for urban material classification / Arnaud Le Bris (2017)PermalinkRobust approach for recovery of rigorous sensor model using rational function model / Wen-chao Huang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)PermalinkSpectral band selection for urban material classification using hyperspectral libraries / Arnaud Le Bris in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol III-7 (July 2016)PermalinkExamining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments / Mbulisi Sibanda in ISPRS Journal of photogrammetry and remote sensing, vol 110 (December 2015)PermalinkTélédétection pour l'agriculture de précision par caméra hyperspectrale miniature / D. Constantin in Géomatique suisse, vol 113 n° 9 (septembre 2015)PermalinkHYCA: A new technique for hyperspectral compressive sensing / G. Martin in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)Permalink