Descripteur



Etendre la recherche sur niveau(x) vers le bas
[article]
Titre : Des pixels et des peuples Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2021 Article en page(s) : pp 15 - 15 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] frontière
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] indicateur démographique
[Termes descripteurs IGN] mode d'occupation du sol
[Termes descripteurs IGN] population rurale
[Termes descripteurs IGN] population urbaineRésumé : (Auteur) Instruments de mesure physique, les satellites sont parfois utilisés pour l'étude des sociétés. Numéro de notice : A2021-324 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtSansCL DOI : sans date de publication en ligne : 07/04/2021 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97482
in Géomètre > n° 2190 (avril 2021) . - pp 15 - 15[article]Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring / Gopal Krishna in Geocarto international, vol 36 n° 5 ([15/03/2021])
![]()
[article]
Titre : Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring Type de document : Article/Communication Auteurs : Gopal Krishna, Auteur ; Rabi N. Sahoo, Auteur ; Prafull Singh, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 481 - 498 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] indice de stress
[Termes descripteurs IGN] Oryza (genre)
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] rizière
[Termes descripteurs IGN] sécheresse
[Termes descripteurs IGN] stress hydrique
[Termes descripteurs IGN] teneur en eau de la végétationRésumé : (auteur) Water deficit in crops induces a stress that may ultimately result in low production. Identification of response of genotypes towards water deficit stress is very crucial for plant phenotyping. The study was carried out with the objective to identify the response of different rice genotypes to water deficit stress. Ten rice genotypes were grown each under water deficit stress and well watered or nonstress conditions. Thermal images coupled with visible images were recorded to quantify the stress and response of genotypes towards stress, and relative water content (RWC) synchronized with image acquisition was also measured in the lab for rice leaves. Synced with thermal imaging, Canopy reflectance spectra from same genotype fields were also recorded. For quantification of water deficit stress, Crop Water Stress Index (CWSI) was computed and its mode values were extracted from processed thermal imageries. It was ascertained from observations that APO and Pusa Sugandha-5 genotypes exhibited the highest resistance to the water deficit stress or drought whereas CR-143, MTU-1010, and Pusa Basmati-1 genotypes ascertained the highest sensitiveness to the drought. The study reveals that there is an effectual relationship (R2 = 0.63) between RWC and CWSI. The relationship between canopy reflectance spectra and CWSI was also established through partial least square regression technique. A very efficient relationship (calibration R2 = 0.94 and cross-validation R2 = 0.71) was ascertained and 10 most optimal wavebands related to water deficit stress were evoked from hyperspectral data resampled at 5 nm wavelength gap. The identified ten most optimum wavebands can contribute in the quick detection of water deficit stress in crops. This study positively contributes towards the identification of drought tolerant and drought resistant genotypes of rice and may provide valuable input for the development of drought-tolerant rice genotypes in future. Numéro de notice : A2021-250 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1618922 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1618922 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97272
in Geocarto international > vol 36 n° 5 [15/03/2021] . - pp 481 - 498[article]Activity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
![]()
[article]
Titre : Activity recognition in residential spaces with Internet of things devices and thermal imaging Type de document : Article/Communication Auteurs : Kshirasagar Naik, Auteur ; Tejas Pandit, Auteur ; Nitin Naik, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] compréhension de l'image
[Termes descripteurs IGN] contrôle par télédétection
[Termes descripteurs IGN] détection d'événement
[Termes descripteurs IGN] espace intérieur
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] intelligence artificielle
[Termes descripteurs IGN] internet des objets
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] modèle stéréoscopique
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] reconnaissance automatique
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] scène 3DRésumé : (auteur) In this paper, we design algorithms for indoor activity recognition and 3D thermal model generation using thermal images, RGB images, captured from external sensors, and the internet of things setup. Indoor activity recognition deals with two sub-problems: Human activity and household activity recognition. Household activity recognition includes the recognition of electrical appliances and their heat radiation with the help of thermal images. A FLIR ONE PRO camera is used to capture RGB-thermal image pairs for a scene. Duration and pattern of activities are also determined using an iterative algorithm, to explore kitchen safety situations. For more accurate monitoring of hazardous events such as stove gas leakage, a 3D reconstruction approach is proposed to determine the temperature of all points in the 3D space of a scene. The 3D thermal model is obtained using the stereo RGB and thermal images for a particular scene. Accurate results are observed for activity detection, and a significant improvement in the temperature estimation is recorded in the 3D thermal model compared to the 2D thermal image. Results from this research can find applications in home automation, heat automation in smart homes, and energy management in residential spaces. Numéro de notice : A2021-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21030988 date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.3390/s21030988 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97075
in Sensors > vol 21 n° 3 (February 2021) . - n° 988[article]
Titre : Remote sensing and GIS Type de document : Guide/Manuel Auteurs : Basudeb Bhatta, Auteur Mention d'édition : 3ème édition Editeur : Oxford, Londres, ... : Oxford University Press Année de publication : 2021 Importance : 752 p. Format : 24 x 18 cm ISBN/ISSN/EAN : 978-0-19-949664-8 Note générale : Bibliographie
additional reading material with Oxford arealLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes descripteurs IGN] acquisition d'images
[Termes descripteurs IGN] airborne multispectral scanner
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] Global Navigation Satellite System
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] Lidar
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] orthorectification
[Termes descripteurs IGN] Passive and Active L and S band Sensor
[Termes descripteurs IGN] photographie aérienne
[Termes descripteurs IGN] Satellite Microwave Radiometer
[Termes descripteurs IGN] scène 3D
[Termes descripteurs IGN] stéréoscopie
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] traitement d'image
[Termes descripteurs IGN] visualisation 3DIndex. décimale : 35.00 Télédétection - généralités Résumé : (Editeur) Beginning with the history and basic concepts of remote sensing and GIS, the book gives an exhaustive coverage of optical, thermal, and microwave remote sensing, global navigation satellite systems (such as GPS and IRNSS), digital photogrammetry, visual image analysis, digital image processing, spatial and attribute data model, geospatial analysis, and planning, implementation, and management of GIS. It also presents the modern trends of remote sensing and GIS with an illustrated discussion on its numerous applications. Note de contenu : 1. Concept of Remote Sensing
1.1 Introduction
1.2 Distance of Remote Sensing
1.3 Definition of Remote Sensing
1.4 Remote Sensing: Art and/or Science
1.5 Data
1.6 Remote Sensing Process
1.7 Source of Energy
1.8 Interaction with Atmosphere
1.9 Interaction with Target
1.9.1 Hemispherical Absorptance, Transmittance, and Reflectan
1.10 Interaction with the Atmosphere Again
1.11 Recording of Energy by Sensor
1.12 Transmission, Reception, and Processing
1.13 Interpretation and Analysis
1.14 Applications of Remote Sensing
1.15 Advantages of Remote Sensing
1.16 Limitations of Remote Sensing
1.17 Ideal Remote Sensing System
2. Types of Remote Sensing and Sensor Characteristics
2.1 Introduction
2.2 Types of Remote Sensing
2.3 Characteristics of Images
2.4 Orbital Characteristics of Satellite
2.5 Remote Sensing Satellites
2.6 Concept of Swath
2.7 Concept of Nadir
2.8 Sensor Resolutions
2.9 Image Referencing System
2.9.1 Path
2.9.2 Row
2.9.3 Orbital Calendar
3. History of Remote Sensing and Indian Space Program
3.1 Introduction
3.2 The Early Age
3.3 The Middle Age
3.4 The Modern Age or Space Age
3.5 Indian Space Program
4. Photographic Imaging
4.1 Introduction
4.2 Camera Systems
4.3 Types of Camera
4.4 Filter
4.5 Film
4.6 Geometry of Aerial Photography
4.7 Ideal Time and Atmosphere for Aerial Remote Sensing
5. Digital Imaging
5.1 Introduction
5.2 Digital Image
5.3 Sensor
5.4 Imaging by Scanning Technique
5.5 Hyper-spectral Imaging
5.6 Imaging By Non-scanning Technique
5.7 Thermal Remote Sensing
5.8 Other Sensors
6. Microwave Remote Sensing
6.1 Introduction
6.2 Passive Microwave Remote Sensing
6.3 Active Microwave Remote Sensing
6.4 Radar Imaging
6.5 Airborne Versus Space-Borne Radars
6.6 Radar Systems
7. Ground-truth Data and Global Positioning System
7.1 Introduction
7.2 Requirements of Ground-Truth Data
7.3 Instruments for Ground Truthing
7.4 Parameters of Ground Truthing
7.5 Factors of Spectral Measurement
7.6 Global Navigation Satellite System
8. Photogrammetry
8.1 Introduction
8.2 Development of Photogrammetry
8.3 Classification of Photogrammetry
8.4 Photogrammetric Process
8.5 Acquisition of Imagery and its Support Data
8.6 Orientation and Triangulation
8.7 Stereo Model Compilation
8.8 Stereoscopic 3D Viewing
8.9 Stereoscopic Measurement
8.10 DTM/DEM Generation
8.11 Contour Map Generation
8.12 Orthorectification
8.13 3D Feature Extraction
8.14 3D Scene Modelling
8.15 Photogrammetry and LiDAR
8.16 Radargrammetry and Radar Interferometry
8.17 Limitations of Photogrammetry
9. Visual Image Interpretation
9.1 Introduction
9.2 Information Extraction by Human and Computer
9.3 Remote Sensing Data Products
9.4 Border or Marginal Information
9.5 Image Interpretation
9.6 Elements of Visual Image Interpretation
9.7 Interpretation Keys
9.8 Generation of Thematic Maps
9.9 Thermal Image Interpretation
9.10 Radar Image Interpretation
10. Digital Image Processing
10.1 Introduction
10.2 Categorization of Image Processing
10.3 Image Processing Systems
10.4 Digital Image
10.5 Media for Digital Data Recording, Storage, and Distribution
10.6 Data Formats of Digital Image
10.7 Header Information
10.8 Display of Digital Image
10.9 Pre-processing
10.10 Image Enhancement
10.11 Image Transformation
10.12 Image Classification
11. Data Integration, Analysis, and Presentation
11.1 Introduction
11.2 Multi-approach of Remote Sensing
11.3 Integration with Ground Truth and Other Ancillary Data
11.4 Integration of Transformed Data
11.5 Integration with GIS
11.6 Process of Remote Sensing Data Analysis
11.7 The Level of Detail
11.8 Limitations of Remote Sensing Data Analysis
11.9 Presentation
12. Applications of Remote Sensing
12.1 Introduction
12.2 Land Cover and Land Use
12.3 Agriculture
12.4 Forestry
12.5 Geology
12.6 Geomorphology
12.7 Urban Applications
12.8 Hydrology
12.9 Mapping
12.10 Oceans and Coastal Monitoring
12.11 Monitoring of Atmospheric Constituents
PART II Geographic Information Systems and Geospatial Analysis
13. Concept of Geographic Information Systems
13.1 Introduction
13.2 Definitions of GIS
13.3 Key Components of GIS
13.4 GIS-An Integration of Spatial and Attribute Information
13.5 GIS-Three Views of Information System
13.6 GIS and Related Terms
13.7 GIS-A Knowledge Hub
13.8 GIS-A Set of Interrelated Subsystems
13.9 GIS-An Information Infrastructure
13.10 Origin of GIS
14. Functions and Advantages of GIS
14.1 Introduction
14.2 Functions of GIS
14.3 Application Areas of GIS
14.4 Advantages of GIS
14.5 Functional Requirements of GIS
14.6 Limitations of GIS
15. Spatial Data Model
15.1 Introduction
15.2 Spatial, Thematic, and Temporal Dimensions of Geographic Data
15.3 Spatial Entity and Object
15.4 Spatial Data Model
15.5 Raster Data Model
15.6 Vector Data Model
15.7 Raster versus Vector
15.8 Object-Oriented Data Model
15.9 File Formats of Spatial Data
16. Attribute Data Management and Metadata Concept
16.1 Introduction
16.2 Concept of Database and DBMS
16.3 Advantages of DBMS
16.4 Functions of DBMS
16.5 File and Data Access
16.6 Data Models
16.7 Database Models
16.8 Data Models in GIS
16.9 Concept of SQL
16.10 Concept of Metadata
17. Process of GIS
17.1 Introduction
17.2 Data Capture
17.3 Data Sources
17.4 Data Encoding Methods
17.5 Linking of Spatial and Attribute Data
17.6 Organizing Data for Analysis
18. Geospatial Analysis
18.1 Introduction
18.2 Geospatial Data Analysis
18.3 Integration and Modelling of Spatial Data
18.4 Geospatial Data Analysis Methods
18.5 Database Query
18.6 Geospatial Measurements
18.7 Overlay Operations
18.8 Network Analysis
18.9 Surface Analysis
18.10 Geostatistics
18.11 Geovisualization
19. Planning, Implementation, and Management of GIS
19.1 Introduction
19.2 Planning of Project
19.3 Implementation of Project
19.4 Management of Project
19.5 Keys for Successful GIS
19.6 Reasons for Unsuccessful GIS
20. Modern Trends of GIS
20.1 Introduction
20.2 Local to Global Concept in GIS
20.3 Increase in Dimensions in GIS
20.4 Linear to Non-linear Techniques in GIS
20.5 Development in Relation between Geometry and Algebra in GIS
20.6 Development of Common Techniques in GIS
20.7 Integration of GIS and Remote Sensing
20.8 Integration of GIS and Multimedia
20.9 3D GIS
20.9.1 Virtual Reality in GIS
20.10 Integration of 3D GIS and Web GIS
20.11 4D GIS and Real-time GIS
20.12 Mobile GIS
20.12.1 Mobile mapping
20.13 Collaborative GIS (CGIS)
21. Change Detection and Geosimulation
21.1 Visual change detection
21.2 Thresholding
21.3 Image difference
21.4 Image regression
21.5 Image ratioing
21.6 Vegetation index differencing
21.7 Principal component differencing
21.8 Multi-temporal image stock classification
21.9 Post classification comparison
21.10 Change vector analysis
21.12 Cellular automata simulation
21.13 Multi-agent simulation
21.14 ANN learning in simulation
Appendix A - Concept of Map, Coordinate System, and Projection
Appendix B - Concept on Mathematical TopicsNuméro de notice : 26518 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/POSITIONNEMENT Nature : Manuel de cours DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97342 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 26518-01 35.00 Livre Centre de documentation Télédétection Disponible Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images Type de document : Article/Communication Auteurs : Haibin Gu, Auteur ; Zhe Lin, Auteur ; Wenxuan Guo, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] Improved Vegetation Dryness Index
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] stress hydrique
[Termes descripteurs IGN] texture du solRésumé : (auteur) Surface soil water content (SWC) is a major determinant of crop production, and accurately retrieving SWC plays a crucial role in effective water management. Unmanned aerial systems (UAS) can acquire images with high temporal and spatial resolutions for SWC monitoring at the field scale. The objective of this study was to develop an algorithm to retrieve SWC by integrating soil texture into a vegetation index derived from UAS multispectral and thermal images. The normalized difference vegetation index (NDVI) and surface temperature (Ts) derived from the UAS multispectral and thermal images were employed to construct the temperature vegetation dryness index (TVDI) using the trapezoid model. Soil texture was incorporated into the trapezoid model based on the relationship between soil texture and the lower and upper limits of SWC to form the texture temperature vegetation dryness index (TTVDI). For validation, 128 surface soil samples, 84 in 2019 and 44 in 2020, were collected to determine soil texture and gravimetric SWC. Based on the linear regression models, the TTVDI had better performance in estimating SWC compared to the TVDI, with an increase in R2 (coefficient of determination) by 14.5% and 14.9%, and a decrease in RMSE (root mean square error) by 46.1% and 10.8%, for the 2019 and 2020 samples, respectively. The application of the TTVDI model based on high-resolution multispectral and thermal UAS images has the potential to accurately and timely retrieve SWC at the field scale. Numéro de notice : A2021-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010145 date de publication en ligne : 04/01/2021 En ligne : https://doi.org/10.3390/rs13010145 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96815
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 145[article]Characterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkQuantification of cotton water consumption by remote sensing / Jefferson Vieira José in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkCrater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkThermal and spatial data integration for recreating rebuilding stages of wooden and masonry buildings / Paulina Lewińska in Photogrammetric record, vol 35 n° 171 (September 2020)
PermalinkDetection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis / T. Poblete in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkMODIS-based land surface temperature for climate variability and change research: the tale of a typical semi-arid to arid environment / Salahuddin M. Jaber in European journal of remote sensing, vol 53 n° 1 (2020)
PermalinkUncertainty analysis of remotely-acquired thermal infrared data to extract the thermal Properties of active lava surfaces / James A. Thompson in Remote sensing, vol 12 n° 1 (January 2020)
PermalinkPermalinkCombining thermal imaging with photogrammetry of an active volcano using UAV: an example from Stromboli, Italy / Zoë E. Wakeford in Photogrammetric record, vol 34 n° 168 (December 2019)
PermalinkQuantification of the adjacency effect on measurements in the thermal infrared region / Xiaopo Zheng in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
Permalink