Descripteur


Etendre la recherche sur niveau(x) vers le bas
A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] altitude
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection des nuages
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] latitude
[Termes descripteurs IGN] longitude
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] neige
[Termes descripteurs IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 87 - 104[article]Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine / Dong Liang in Remote sensing of environment, Vol 256 (April 2020)
![]()
[article]
Titre : Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine Type de document : Article/Communication Auteurs : Dong Liang, Auteur ; Huadong Guo, Auteur ; Lu Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112318 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] albedo
[Termes descripteurs IGN] Antarctique
[Termes descripteurs IGN] calotte glaciaire
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] fonte des glaces
[Termes descripteurs IGN] Google Earth Engine
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] montée du niveau de la mer
[Termes descripteurs IGN] série temporelleRésumé : (auteur) The Antarctic ice sheet is an important mass of glacier ice. It is particularly sensitive to climate change, and the flow of Antarctica's inland glaciers into the sea, accelerated by collapsing ice shelves, threatens global sea level rise. The amount of snowmelt on the surface of the ice sheet is an important metric for accurately assessing surface material loss and albedo change, which affect the stability of the ice sheet. This study proposes a framework for quickly extracting time-series freeze-thaw information at the continental scale and 40 m resolution by taking advantage of the huge amount of synthetic aperture radar (SAR) data acquired by Sentinel-1 satellites over the Antarctic, available for rapid processing on Google Earth Engine. Co-orbit normalization is used in the proposed framework to establish a unified standard of judgement by reducing the variations in the backscattering coefficient introduced by observation geometry, terrain fluctuations, and melt conditions between images acquired at different times. We implemented the framework to produce a massive dataset of both monthly freeze-thaw information over the Antarctic and higher temporal resolution freeze-thaw information for the Larsen C ice shelf from 2015 to 2019, with overall accuracies of 93% verified by a manual visual interpretation method and 84% evaluated from automatic weather station temperatures. Due to its effectiveness and robustness, the framework can be used to analyse the spatiotemporal distribution of snowmelt, the change in melt area, and anomalous melt events in Antarctica, especially those in Larsen C caused by foehn wind. Numéro de notice : A2021-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112318 date de publication en ligne : 10/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112318 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97117
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112318[article]Terrestrial laser scanning intensity captures diurnal variation in leaf water potential / S. Junttila in Remote sensing of environment, Vol 255 (March 2021)
![]()
[article]
Titre : Terrestrial laser scanning intensity captures diurnal variation in leaf water potential Type de document : Article/Communication Auteurs : S. Junttila, Auteur ; T. Hölttä, Auteur ; Eetu Puttonen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112274 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] Betula (genre)
[Termes descripteurs IGN] diagnostic foliaire
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] dynamique de la végétation
[Termes descripteurs IGN] Pinus sylvestris
[Termes descripteurs IGN] sécheresse
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] stress hydrique
[Termes descripteurs IGN] teneur en eau de la végétation
[Termes descripteurs IGN] variation diurneRésumé : (auteur) During the past decades, extreme events have become more prevalent and last longer, and as a result drought-induced plant mortality has increased globally. Timely information on plant water dynamics is essential for understanding and anticipating drought-induced plant mortality. Leaf water potential (ΨL), which is usually measured destructively, is the most common metric that has been used for decades for measuring water stress. Remote sensing methods have been developed to obtain information on water dynamics from trees and forested landscapes. However, the spatial and temporal resolutions of the existing methods have limited our understanding of the water dynamics and diurnal variation of ΨL within single trees. Thus, we investigated the capability of terrestrial laser scanning (TLS) intensity in observing diurnal variation in ΨL during a 50-h monitoring period. We aimed to improve the understanding on how large a part of the diurnal variation in ΨL can be captured using TLS intensity observations. We found that TLS intensity at the 905 nm wavelength measured from a static position was able to explain 77% of the variation in ΨL for three trees of two tree species with a root mean square error of 0.141 MPa. Based on our experiment with three trees, a time series of TLS intensity measurements can be used in detecting changes in ΨL, and thus it is worthwhile to expand the investigations to cover a wider range of tree species and forests and further increase our understanding of plant water dynamics at wider spatial and temporal scales. Numéro de notice : A2021-192 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2020.112274 date de publication en ligne : 14/01/2021 En ligne : https://doi.org/10.1016/j.rse.2020.112274 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97113
in Remote sensing of environment > Vol 255 (March 2021) . - n° 112274[article]Development and assessment of rainwater harvesting suitability map using analytical hierarchy process, GIS and RS techniques / Khaled S. Balkhair in Geocarto international, vol 36 n° 4 ([01/03/2021])
![]()
[article]
Titre : Development and assessment of rainwater harvesting suitability map using analytical hierarchy process, GIS and RS techniques Type de document : Article/Communication Auteurs : Khaled S. Balkhair, Auteur ; Khalil Ur Rahman, Auteur Année de publication : 2021 Article en page(s) : pp 421 - 448 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] Arabie Saoudite
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] carte hydrographique
[Termes descripteurs IGN] eau pluviale
[Termes descripteurs IGN] écoulement des eaux
[Termes descripteurs IGN] gestion de l'eau
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Rainwater harvesting (RWH), which is the collection and storage of rainwater for multiple purposes, is gaining recognition in water supply issues. Selection of harvesting sites is the most critical factor in RWH projects. The objective of this study is to develop a suitability map of RWH sites for a basin in Saudi Arabia. The method used, constitute the identification and assigning weights to criteria, and generation of suitability map using Analytical Hierarchy Process (AHP). Eight appropriate criteria were considered. Results showed that excellent and good sites covered about 40.6% of the total available sites. Sensitivity analysis showed that the curve number (CN), slope, rainfall and soil were the most influential criteria. The maximum increase in the percentage area of excellent sites was 92% while good and moderate classes decreased by 43 and 53%, respectively. The developed suitability maps provide useful information to the decision maker for use in water management. Numéro de notice : A2021-162 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.160859 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1608591 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97082
in Geocarto international > vol 36 n° 4 [01/03/2021] . - pp 421 - 448[article]Impact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions / Xin-Ming Zhu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Impact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions Type de document : Article/Communication Auteurs : Xin-Ming Zhu, Auteur ; Xiao-Ning Song, Auteur ; Pei Leng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2680 - 2697 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] variable biophysique (végétation)Résumé : (Auteur) Investigating the relations between land surface temperature (LST) and biophysical compositions can help the understanding of the surface biophysical process. However, there are still uncertainties in determining the impacts of biophysical compositions on LST due to the atmospheric effects. In this article, four atmospheric correction algorithms were used to correct 12 Landsat 8 images in Xi’an, Beijing, Wuhan, and Guangzhou, China, including the Atmospheric Correction for Flat Terrain (ATCOR2), Quick Atmospheric Correction (QUAC), Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH), and Second Simulation of Satellite Signal in the Solar Spectrum (6S). Then, geodetector was used to investigate the atmospheric correction differences in the spatial heterogeneity relationships between LST and normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and bare soil index (BSI). Results indicate that the selected composition factors were greatly improved after atmospheric correction, and the relations between LST and three factors were characterized by obvious atmospheric correction differences in four study areas. On the whole, the 6S algorithm performed the best in improving the factor values and impacting the spatial heterogeneity relations between LST and biophysical compositions, followed by FLAASH, QUAC, and ATCOR2 algorithms. Except for Wuhan, 6S, FLAASH, and QUAC algorithms significantly enhanced the correlation between LST and NDVI. However, all algorithms weakened the correlations between LST, NDVI, and BSI, except Guangzhou. These findings have been verified using the regression analysis. In addition, with geodetector, combinations of any two composition factors all had strongly enhanced impacts on LST, and a combination between NDVI and NDBI performed the strongest in most cases. Numéro de notice : A2021-219 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002821 date de publication en ligne : 26/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002821 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97211
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2680 - 2697[article]Integrity investigation of global ionospheric TEC maps for high-precision positioning / Jiaojiao Zhao in Journal of geodesy, vol 95 n° 3 (March 2021)
PermalinkA multi-criteria analysis of forest restoration strategies to improve the ecosystem services supply: an application in Central Italy / Alessandro Paletto in Annals of Forest Science [en ligne], vol 78 n° 1 (March 2021)
PermalinkON GLONASS pseudo-range inter-frequency bias solution with ionospheric delay modeling and the undifferenced uncombined PPP / Zheng Zhang in Journal of geodesy, vol 95 n° 3 (March 2021)
PermalinkOn the polarimetric variable improvement via alignment of subarray channels in PPAR using weather returns / Igor R. Ivić in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkRadar measurements of snow depth over sea ice on an unmanned aerial vehicle / Adrian Eng-Choon Tan in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkRecent increase in European forest harvests as based on area estimates (Ceccherini et al. 2020a) not confirmed in the French case / Nicolas Picard in Annals of Forest Science [en ligne], vol 78 n° 1 (March 2021)
PermalinkAssessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([15/02/2021])
PermalinkIntegrating runoff map of a spatially distributed model and thematic layers for identifying potential rainwater harvesting suitability sites using GIS techniques / Hamid Karimi in Geocarto international, vol 36 n° 3 ([15/02/2021])
PermalinkAssessment of mass-induced sea level variability in the Tropical Indian Ocean based on GRACE and altimeter observations / Shiva Shankar Manche in Journal of geodesy, vol 95 n° 2 (February 2021)
PermalinkG-band radar for humidity and cloud remote sensing / Ken B. Cooper in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
Permalink