Descripteur
Documents disponibles dans cette catégorie (3880)


Etendre la recherche sur niveau(x) vers le bas
How large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps / Marion E. Caduff in Forest ecology and management, vol 514 (15 June 2022)
![]()
[article]
Titre : How large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps Type de document : Article/Communication Auteurs : Marion E. Caduff, Auteur ; Natalie Brožová, Auteur ; Andrea D. Kupferschmid, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alpes
[Termes IGN] avalanche
[Termes IGN] bois mort
[Termes IGN] dépérissement
[Termes IGN] image à haute résolution
[Termes IGN] modèle de simulation
[Termes IGN] orthophotographie
[Termes IGN] protection des forêts
[Termes IGN] régénération (sylviculture)
[Termes IGN] risque naturel
[Termes IGN] santé des forêts
[Termes IGN] Scolytinae
[Termes IGN] Suisse
[Termes IGN] xylophageRésumé : (auteur) Large-scale bark beetle outbreaks in spruce dominated mountain forests have increased in recent decades, and this trend is expected to continue in the future. These outbreaks have immediate and major effects on forest structure and ecosystem services. However, it remains unclear how forests recover from bark beetle infestations over the long term, and how different recovery stages fulfil the capacity of forests to protect infrastructures and human lives from natural hazards. The aim of this study was to investigate how a bark beetle infestation (1992–1997) in a spruce dominated forest in the Swiss Alps changed the forest structure and its protective function against snow avalanches. In 2020, i.e. 27 years after the peak of the outbreak, we re-surveyed the composition and height of new trees, as well as the deadwood height and degree of decay in an area that had been surveyed 20 years earlier. With the help of remote sensing data and avalanche simulations, we assessed the protective effect against avalanches before the disturbances (in 1985) and in 1997, 2007, 2014 and 2019 for a frequent (30-year return period) and an extreme (300-year return period) avalanche scenario. Post-disturbance regeneration led to a young forest that was again dominated by spruce 27 years after the outbreak, with median tree heights of 3–4 m and a crown cover of 10–30%. Deadwood covered 20–25% of the forest floor and was mainly in decay stages two and three out of five. Snags had median heights of 1.4 m, leaning logs 0.5 m and lying logs 0.3 m. The protective effect of the forest was high before the bark beetle outbreak and decreased during the first years of infestation (until 1997), mainly in the case of extreme avalanche events. The protective capacity reached an overall minimum in 2007 as a result of many forest openings. It partially recovered by 2014 and further increased by 2019, thanks to forest regeneration. Simulation results and a lack of avalanche releases since the infestation indicate that the protective capacity of post-disturbance forest stands affected by bark beetle may often be underestimated. Numéro de notice : A2022-349 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2022.120201 Date de publication en ligne : 08/04/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100536
in Forest ecology and management > vol 514 (15 June 2022) . - n° 120201[article]Revising cadastral data on land boundaries using deep learning in image-based mapping / Bujar Fetai in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)
![]()
[article]
Titre : Revising cadastral data on land boundaries using deep learning in image-based mapping Type de document : Article/Communication Auteurs : Bujar Fetai, Auteur ; Dejan Grigillo, Auteur ; Anka Lisec, Auteur Année de publication : 2022 Article en page(s) : n° 298 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cadastre étranger
[Termes IGN] cartographie cadastrale
[Termes IGN] chevauchement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] image captée par drone
[Termes IGN] limite cadastrale
[Termes IGN] point d'appui
[Termes IGN] SlovénieRésumé : (auteur) One of the main concerns of land administration in developed countries is to keep the cadastral system up to date. The goal of this research was to develop an approach to detect visible land boundaries and revise existing cadastral data using deep learning. The convolutional neural network (CNN), based on a modified architecture, was trained using the Berkeley segmentation data set 500 (BSDS500) available online. This dataset is known for edge and boundary detection. The model was tested in two rural areas in Slovenia. The results were evaluated using recall, precision, and the F1 score—as a more appropriate method for unbalanced classes. In terms of detection quality, balanced recall and precision resulted in F1 scores of 0.60 and 0.54 for Ponova vas and Odranci, respectively. With lower recall (completeness), the model was able to predict the boundaries with a precision (correctness) of 0.71 and 0.61. When the cadastral data were revised, the low values were interpreted to mean that the lower the recall, the greater the need to update the existing cadastral data. In the case of Ponova vas, the recall value was less than 0.1, which means that the boundaries did not overlap. In Odranci, 21% of the predicted and cadastral boundaries overlapped. Since the direction of the lines was not a problem, the low recall value (0.21) was mainly due to overly fragmented plots. Overall, the automatic methods are faster (once the model is trained) but less accurate than the manual methods. For a rapid revision of existing cadastral boundaries, an automatic approach is certainly desirable for many national mapping and cadastral agencies, especially in developed countries. Numéro de notice : A2022-357 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11050298 Date de publication en ligne : 04/05/2022 En ligne : https://doi.org/10.3390/ijgi11050298 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100562
in ISPRS International journal of geo-information > vol 11 n° 5 (May 2022) . - n° 298[article]The role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa / Xueqin Li in Sustainable Cities and Society, vol 80 (May 2022)
![]()
[article]
Titre : The role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa Type de document : Article/Communication Auteurs : Xueqin Li, Auteur ; Lindsay C. Stringer, Auteur ; Martin Dallimer, Auteur Année de publication : 2022 Article en page(s) : n° 103798 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] climat local
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] croissance urbaine
[Termes IGN] espace vert
[Termes IGN] Ethiopie
[Termes IGN] Google Earth Engine
[Termes IGN] ilot thermique urbain
[Termes IGN] indice de végétation
[Termes IGN] Ouganda
[Termes IGN] saison
[Termes IGN] série temporelle
[Termes IGN] Soudan
[Termes IGN] Tanzanie
[Termes IGN] température au sol
[Termes IGN] zone urbaine denseRésumé : (auteur) Rapid urbanisation and climate change are two major trends in Africa in need of further investigation. In this paper, the urban thermal environment and vegetation abundance in four East African cities (Khartoum, Addis Ababa, Kampala and Dar es Salaam) were characterised, providing new insights into the role and potentials of blue green infrastructure in differing climate regions. The Local Climate Zone (LCZ) framework was employed to detect the seasonal Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI) derived from Landsat-8 data. Significant LST differences between LCZs in dry and rainy seasons were confirmed using a Welch's T test. The LCZs were found to offer potentially new approaches to investigating issues pertaining to urban heating in data-scarce regions. Greater surface urban heat island (SUHI) intensity during the rainy season was apparent in Khartoum and Addis Ababa, emphasising the importance of seasonality in urban thermal studies. Spatial correlations between EVI and LST within each LCZ were analysed through Moran's I and further illustrated the complex relationships of vegetation and thermal behaviour in urban areas. Despite these complexities, urban blue green infrastructure was found to moderate the SUHI, with different types of intervention required across different LCZs. Numéro de notice : A2022-269 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.103798 Date de publication en ligne : 23/02/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103798 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100280
in Sustainable Cities and Society > vol 80 (May 2022) . - n° 103798[article]Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
![]()
[article]
Titre : Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations Type de document : Article/Communication Auteurs : Francesco Solano, Auteur ; Giuseppe Modica, Auteur ; Salvatore Praticò, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Calabre
[Termes IGN] écosystème forestier
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt ancienne
[Termes IGN] forêt méditerranéenne
[Termes IGN] forêt primaire
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] photogrammétrie aérienne
[Termes IGN] structure spatiale
[Termes IGN] structure-from-motion
[Termes IGN] surveillance forestièreRésumé : (auteur) In front of climate change scenarios and global loss of biodiversity, it is essential to monitor the structure of old-growth forests to study ecosystem status and dynamics to inform future conservation and restoration programmes. We propose an Unmanned Aerial Vehicle (UAV)-based framework to monitor fine-grained forest top canopy structure in a primary old-growth beech (Fagus sylvatica L.) forest in Pollino National Park, Italy, which belongs to the UNESCO World Heritage (UNESCO WH) serial site “Ancient and Primeval beech forests of the Carpathians and other regions of Europe”. Canopy profile, gap properties and their spatial distribution patterns were analysed using the canopy height model (CHM) derived from UAV surveys. Very high-resolution orthomosaic images coupled with direct field measurement data were used to assess gap detection accuracy and CHM validation. Forest canopy properties along with the vertical layering of the canopy were further explored using second-order statistics. The reconstructed canopy profile revealed a bimodal top height frequency distribution. The upper canopy layer (h > 14 m) was the most represented canopy height, with the remaining 50% split between the medium and lowest layer; 551 gaps were identified within 11.5 ha. Gap size varied between 2 m2 and 353 m2, and 19 m2was the mean gap size; the gap size-frequency relationship reflected a power-law probability distribution. About 97 % of the gaps were Numéro de notice : A2022-369 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ecolind.2022.108807 Date de publication en ligne : 01/04/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.108807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100598
in Ecological indicators > vol 138 (May 2022) . - n° 108807[article]Automated inventory of broadleaf tree plantations with UAS imagery / Aishwarya Chandrasekaran in Remote sensing, vol 14 n° 8 (April-2 2022)
![]()
[article]
Titre : Automated inventory of broadleaf tree plantations with UAS imagery Type de document : Article/Communication Auteurs : Aishwarya Chandrasekaran, Auteur ; Guofan Shao, Auteur ; Songlin Fei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1931 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] feuillu
[Termes IGN] hauteur à la base du houppier
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] plantation forestière
[Termes IGN] R (langage)
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) With the increased availability of unmanned aerial systems (UAS) imagery, digitalized forest inventory has gained prominence in recent years. This paper presents a methodology for automated measurement of tree height and crown area in two broadleaf tree plantations of different species and ages using two different UAS platforms. Using structure from motion (SfM), we generated canopy height models (CHMs) for each broadleaf plantation in Indiana, USA. From the CHMs, we calculated individual tree parameters automatically through an open-source web tool developed using the Shiny R package and assessed the accuracy against field measurements. Our analysis shows higher tree measurement accuracy with the datasets derived from multi-rotor platform (M600) than with the fixed wing platform (Bramor). The results show that our automated method could identify individual trees (F-score > 90%) and tree biometrics (root mean square error Numéro de notice : A2022-351 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14081931 Date de publication en ligne : 16/04/2022 En ligne : https://doi.org/10.3390/rs14081931 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100539
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1931[article]Assessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data / Cheng-Chun Lee in Computers, Environment and Urban Systems, vol 93 (April 2022)
PermalinkAssessment of RTK quadcopter and structure-from-motion photogrammetry for fine-scale monitoring of coastal topographic complexity / Stéphane Bertin in Remote sensing, vol 14 n° 7 (April-1 2022)
PermalinkCharacterizing stream morphological features important for fish habitat using airborne laser scanning data / Spencer Dakin Kuiper in Remote sensing of environment, vol 272 (April 2022)
PermalinkDirect photogrammetry with multispectral imagery for UAV-based snow depth estimation / Kathrin Maier in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
PermalinkHybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy / Norbert Haala in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
PermalinkSimulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data / Zihao Huang in Remote sensing, vol 14 n° 7 (April-1 2022)
PermalinkAn approach to extracting digital elevation model for undulating and hilly terrain using de-noised stereo images of Cartosat-1 sensor / Litesh Bopche in Applied geomatics, vol 14 n° 1 (March 2022)
PermalinkAutomatic extraction of building geometries based on centroid clustering and contour analysis on oblique images taken by unmanned aerial vehicles / Leilei Zhang in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)
PermalinkComparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
PermalinkComparison of UAV-based LiDAR and digital aerial photogrammetry for measuring crown-level canopy height in the urban environment / Longfei Zhou in Urban Forestry & Urban Greening, vol 69 (March 2022)
Permalink