Descripteur
Termes IGN > aménagement > infrastructure
infrastructure |
Documents disponibles dans cette catégorie (1626)


Etendre la recherche sur niveau(x) vers le bas
Can machine learning improve small area population forecasts? A forecast combination approach / Irina Grossman in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : Can machine learning improve small area population forecasts? A forecast combination approach Type de document : Article/Communication Auteurs : Irina Grossman, Auteur ; Kasun Bandara, Auteur ; Tom Wilson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101806 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] Australie
[Termes IGN] démographie
[Termes IGN] Extreme Gradient Machine
[Termes IGN] infrastructure
[Termes IGN] lissage de données
[Termes IGN] modèle de simulation
[Termes IGN] modèle empirique
[Termes IGN] Nouvelle-Zélande
[Termes IGN] planification stratégique
[Termes IGN] pondération
[Termes IGN] série temporelleRésumé : (auteur) Generating accurate small area population forecasts is vital for governments and businesses as it provides better grounds for decision making and strategic planning of future demand for services and infrastructure. Small area population forecasting faces numerous challenges, including complex underlying demographic processes, data sparsity, and short time series due to changing geographic boundaries. In this paper, we propose a novel framework for small area forecasting which combines proven demographic forecasting methods, an exponential smoothing based algorithm, and a machine learning based forecasting technique. The proposed forecasting combination contains four base models commonly used in demographic forecasting, a univariate forecasting model specifically suitable for forecasting yearly data, and a globally trained Light Gradient Boosting Model (LGBM) that exploits the similarities between a collection of population time series. In this study, three forecast combination techniques are investigated to weight the forecasts generated by these base models. We empirically evaluate our method, by preparing small area population forecasts for Australia and New Zealand. The proposed framework is able to achieve competitive results in terms of forecasting accuracy. Moreover, we show that the inclusion of the LGBM model always improves the accuracy of combination models on both datasets, relative to combination models which only include the demographic models. In particular, the results indicate that the proposed combination framework decreases the prevalence of relatively poor forecasts, while improving the reliability of small area population forecasts. Numéro de notice : A2022-374 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101806 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101806 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100621
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101806[article]Constraint-based evaluation of map images generalized by deep learning / Azelle Courtial in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
![]()
[article]
Titre : Constraint-based evaluation of map images generalized by deep learning Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya
, Auteur ; Xiang Zhang, Auteur
Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] connexité (graphes)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] montagne
[Termes IGN] programmation par contraintes
[Termes IGN] qualité des données
[Termes IGN] rendu réaliste
[Termes IGN] route
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Deep learning techniques have recently been experimented for map generalization. Although promising, these experiments raise new problems regarding the evaluation of the output images. Traditional map generalization evaluation cannot directly be applied to the results in a raster format. Additionally, the internal evaluation used by deep learning models is mostly based on the realism of images and the accuracy of pixels, and none of these criteria is sufficient to evaluate a generalization process. Finally, deep learning processes tend to hide the causal mechanisms and do not always guarantee a result that follows cartographic principles. In this article, we propose a method to adapt constraint-based evaluation to the images generated by deep learning models. We focus on the use case of mountain road generalization, and detail seven raster-based constraints, namely, clutter, coalescence reduction, smoothness, position preservation, road connectivity preservation, noise absence, and color realism constraints. These constraints can contribute to current studies on deep learning-based map generalization, as they can help guide the learning process, compare different models, validate these models, and identify remaining problems in the output images. They can also be used to assess the quality of training examples. Numéro de notice : A2022-332 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-022-00104-2 Date de publication en ligne : 07/05/2022 En ligne : http://dx.doi.org/10.1007/s41651-022-00104-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100646
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022) . - n° 13[article]Towards the automated large-scale reconstruction of past road networks from historical maps / Johannes H. Uhl in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Towards the automated large-scale reconstruction of past road networks from historical maps Type de document : Article/Communication Auteurs : Johannes H. Uhl, Auteur ; Stefan Leyk, Auteur ; Yao-Yi Chiang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101794 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] analyse de sensibilité
[Termes IGN] carte ancienne
[Termes IGN] carte routière
[Termes IGN] carte topographique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données multitemporelles
[Termes IGN] Etats-Unis
[Termes IGN] extraction du réseau routier
[Termes IGN] histoire
[Termes IGN] paysage
[Termes IGN] réseau routier
[Termes IGN] transport routier
[Termes IGN] urbanisationRésumé : (auteur) Transportation infrastructure, such as road or railroad networks, represent a fundamental component of our civilization. For sustainable planning and informed decision making, a thorough understanding of the long-term evolution of transportation infrastructure such as road networks is crucial. However, spatially explicit, multi-temporal road network data covering large spatial extents are scarce and rarely available prior to the 2000s. Herein, we propose a framework that employs increasingly available scanned and georeferenced historical map series to reconstruct past road networks, by integrating abundant, contemporary road network data and color information extracted from historical maps. Specifically, our method uses contemporary road segments as analytical units and extracts historical roads by inferring their existence in historical map series based on image processing and clustering techniques. We tested our method on over 300,000 road segments representing more than 50,000 km of the road network in the United States, extending across three study areas that cover 42 historical topographic map sheets dated between 1890 and 1950. We evaluated our approach by comparison to other historical datasets and against manually created reference data, achieving F-1 scores of up to 0.95, and showed that the extracted road network statistics are highly plausible over time, i.e., following general growth patterns. We demonstrated that contemporary geospatial data integrated with information extracted from historical map series open up new avenues for the quantitative analysis of long-term urbanization processes and landscape changes far beyond the era of operational remote sensing and digital cartography. Numéro de notice : A2022-243 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101794 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100182
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101794[article]3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation / Heyang Thomas Li in The Visual Computer, vol 38 n° 5 (May 2022)
![]()
[article]
Titre : 3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation Type de document : Article/Communication Auteurs : Heyang Thomas Li, Auteur ; Zachary Todd, Auteur ; Nikolas Bielski, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1759 - 1774 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification orientée objet
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] route
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) The classification and extraction of road markings and lanes are of critical importance to infrastructure assessment, planning and road safety. We present a pipeline for the accurate segmentation and extraction of rural road surface objects in 3D lidar point-cloud, as well as a method to extract geometric parameters belonging to tar seal. To decrease the computational resources needed, the point-clouds were aggregated into a 2D image space before being transformed using affine transformations. The Mask R-CNN algorithm is then applied to the transformed image space to localize, segment and classify the road objects. The segmentation results for road surfaces and markings can then be used for geometric parameter estimation such as road widths estimation, while the segmentation results show that the efficacy of the existing Mask R-CNN to segment needle-type objects is improved by our proposed transformations. Numéro de notice : A2022-376 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02103-8 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.1007/s00371-021-02103-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100627
in The Visual Computer > vol 38 n° 5 (May 2022) . - pp 1759 - 1774[article]Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads / Raul de Paula Pires in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
![]()
[article]
Titre : Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads Type de document : Article/Communication Auteurs : Raul de Paula Pires, Auteur ; Kenneth Olofsson, Auteur ; Henrik J. Persson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 211 - 224 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] collecte de données
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar mobile
[Termes IGN] route
[Termes IGN] semis de points
[Termes IGN] Suède
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (Auteur) The collection of field-reference data is a key task in remote sensing-based forest inventories. However, traditional methods of collection demand extensive personnel resources. Thus, field-reference data collection would benefit from more automated methods. In this study, we proposed a method for individual tree detection (ITD) and stem attribute estimation based on a car-mounted mobile laser scanner (MLS) operating along forest roads. We assessed its performance in six ranges with increasing mean distance from the roadside. We used a Riegl VUX-1LR sensor operating with high repetition rate, thus providing detailed cross sections of the stems. The algorithm we propose was designed for this sensor configuration, identifying the cross sections (or arcs) in the point cloud and aggregating those into single trees. Furthermore, we estimated diameter at breast height (DBH), stem profiles, and stem volume for each detected tree. The accuracy of ITD, DBH, and stem volume estimates varied with the trees’ distance from the road. In general, the proximity to the sensor of branches 0–10 m from the road caused commission errors in ITD and over estimation of stem attributes in this zone. At 50–60 m from roadside, stems were often occluded by branches, causing omissions and underestimation of stem attributes in this area. ITD’s precision and sensitivity varied from 82.8% to 100% and 62.7% to 96.7%, respectively. The RMSE of DBH estimates ranged from 1.81 cm (6.38%) to 4.84 cm (16.9%). Stem volume estimates had RMSEs ranging from 0.0800 m3 (10.1%) to 0.190 m3 (25.7%), depending on the distance to the sensor. The average proportion of detected reference volume was highly affected by the performance of ITD in the different zones. This proportion was highest from 0 to 10 m (113%), a zone that concentrated most ITD commission errors, and lowest from 50 to 60 m (66.6%), mostly due to the omission errors in this area. In the other zones, the RMSE ranged from 87.5% to 98.5%. These accuracies are in line with those obtained by other state-of-the-art MLS and terrestrial laser scanner (TLS) methods. The car-mounted MLS system used has the potential to collect data efficiently in large-scale inventories, being able to scan approximately 80 ha of forests per day depending on the survey setup. This data collection method could be used to increase the amount of field-reference data available in remote sensing-based forest inventories, improve models for area-based estimations, and support precision forestry development. Numéro de notice : A2022-229 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.004 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.004 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100215
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 211 - 224[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt An exact statistical method for analyzing co-location on a street network and its computational implementation / Wataru Morioka in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
PermalinkDetecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach / Andreas Rienow in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkA graph attention network for road marking classification from mobile LiDAR point clouds / Lina Fang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkMining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkComparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
PermalinkDynamic linkage between urbanization, electrical power consumption, and suitability analysis using remote sensing and GIS techniques / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
PermalinkGIS-based employment availabilities by mode of transport in Kuwait / S. Alkheder in Applied geomatics, vol 14 n° 1 (March 2022)
PermalinkLiDAR-based method for analysing landmark visibility to pedestrians in cities: case study in Kraków, Poland / Krystian Pyka in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)
PermalinkMoGUS, un outil de modélisation et d'analyse comparative des trames urbaines / Dominique Badariotti in Revue internationale de géomatique, vol 30 n° 3-4 (juillet - décembre 2020)
PermalinkRoad network generalization method constrained by residential areas / Zheng Lyu in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
Permalink