Descripteur
Termes IGN > aménagement > infrastructure
infrastructure |
Documents disponibles dans cette catégorie (1624)


Etendre la recherche sur niveau(x) vers le bas
Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets / Li Geng in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)
![]()
[article]
Titre : Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets Type de document : Article/Communication Auteurs : Li Geng, Auteur ; Ke Zhang, Auteur Année de publication : 2023 Article en page(s) : n° 7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] mobilité urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routierRésumé : (auteur) Urban planners have been long interested in understanding how urban structure and activities are mutually influenced. Human mobility and economic activities naturally drive the formation of road network structure and the accessibility of the latter shapes the patterns of movement flow across urban space. In this paper, we perform an exploratory study on the relationship between the street network structure and the intensity of human movement in urban areas. We focus on two cities and we utilize a dataset of geo-tagged tweets that can form a proxy to urban mobility and the corresponding street networks as obtained from OpenStreetMap. We apply three network centrality measures, including closeness, betweenness and straightness centrality, calculated at a global or local scale, as well as under mixed or individual transportation mode (e.g., driving, biking and walking) with its directional accessibility, to uncover the structural properties of urban street networks. We further design an urban area transition network and apply PageRank to capture the intensity of human mobility. Our correlation analysis indicates different centrality metrics have different levels of correlation with the intensity of human movement. The closeness centrality consistently shows the highest correlation (with a coefficient around 0.6
) with human movement intensity when calculated at a global scale, while straightness centrality often shows no correlation at the global scale or weaker correlation ρ≈0.4
at the local scale. The correlation levels further depend on the type of directional accessibility and of various types of transportation modes. Hence, the directionality and transportation mode, largely ignored in the analysis of road networks, are crucial. Furthermore, the strength of the correlation varies in the two cities examined, indicating potential differences in urban spatial structure and human mobility patterns.Numéro de notice : A2023-105 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.3390/ijgi12010007 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.3390/ijgi12010007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102433
in ISPRS International journal of geo-information > vol 12 n° 1 (January 2023) . - n° 7[article]Improvement of 3D LiDAR point cloud classification of urban road environment based on random forest classifier / Mahmoud Mohamed in Geocarto international, vol 38 n° inconnu ([01/01/2023])
![]()
[article]
Titre : Improvement of 3D LiDAR point cloud classification of urban road environment based on random forest classifier Type de document : Article/Communication Auteurs : Mahmoud Mohamed, Auteur ; Salem Morsy, Auteur ; Adel El-Shazly, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] zone urbaineMots-clés libres : cylindrical neighbourhood = voisinage cylindrique Résumé : (auteur) 3D road mapping is essential for intelligent transportation system in smart cities. Road environment receives its data from mobile laser scanning (MLS) systems in the format of LiDAR point clouds, which are distinguished with their accuracy and high density. In this paper, a mobile LiDAR data classification method based on machine learning (ML) is presented. First, data subsampling and slicing are applied, followed by cylindrical neighbourhood selection method to determine the neighbourhood of each point. Second, a new LiDAR-based point feature namely Zmodis introduced, and used along with existing fifteen geometric features as input for a ML algorithm. Finally, Random Forest classifier is applied to a part of (Paris-Lille-3D) MLS point clouds belonging to NPM3D Benchmark. The dataset is about 1.5 km long road in Lille, France with more than 98 million points. The use of Zmod improved the accuracy from 90.26% to 95.23% and achieved sufficient results for classes with low points' portion in the dataset. In addition, the Zmod is the third important feature in the classification process among the sixteen features with about 14.63%. Moreover, using the first six important features achieved almost the maximum overall accuracy with about 60% reduction in the processing time. Numéro de notice : A2022-622 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2102218 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2102218 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101357
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]LinkClimate: An interoperable knowledge graph platform for climate data / Jiantao Wu in Computers & geosciences, vol 169 (December 2022)
![]()
[article]
Titre : LinkClimate: An interoperable knowledge graph platform for climate data Type de document : Article/Communication Auteurs : Jiantao Wu, Auteur ; Fabrizio Orlandi, Auteur ; Declan O'Sullivan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105215 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] changement climatique
[Termes IGN] données météorologiques
[Termes IGN] données multisources
[Termes IGN] historique des données
[Termes IGN] interopérabilité sémantique
[Termes IGN] National oceanic and atmospheric administration
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] réseau sémantique
[Termes IGN] site wiki
[Termes IGN] SPARQL
[Termes IGN] web sémantiqueRésumé : (auteur) Climate science has become more ambitious in recent years as global awareness about the environment has grown. To better understand climate, historical climate(e.g. archived meteorological variables such as temperature, wind, water, etc.) and climate-related data (e.g. geographical features and human activities) are widely used by today’s climate research to derive models for an explainable climate change and its effects. However, such data sources are often dispersed across a multitude of disconnected data silos on the Web. Moreover, there is a lack of advanced climate data platforms to enable multi-source heterogeneous climate data analysis, therefore, researchers must face a stern challenge in collecting and analyzing multi-source data. In this paper, we address this problem by proposing a climate knowledge graph for the integration of multiple climate data and other data sources into one service, leveraging Web technologies (e.g. HTTP) for multi-source climate data analysis. The proposed knowledge graph is primarily composed of data from the National Oceanic and Atmospheric Administration’s daily climate summaries, OpenStreetMap, and Wikidata, and it supports joint data queries on these widely used databases. This paper shows, with a use case in Ireland and the United Kingdom, how climate researchers could benefit from this platform as it allows them to easily integrate datasets from different domains and geographical locations. Numéro de notice : A2022-789 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cageo.2022.105215 Date de publication en ligne : 30/08/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105215 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101897
in Computers & geosciences > vol 169 (December 2022) . - n° 105215[article]Semantic segmentation of bridge components and road infrastructure from mobile LiDAR data / Yi-Chun Lin in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
![]()
[article]
Titre : Semantic segmentation of bridge components and road infrastructure from mobile LiDAR data Type de document : Article/Communication Auteurs : Yi-Chun Lin, Auteur ; Ayman Habib, Auteur Année de publication : 2022 Article en page(s) : n° 100023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] autoroute
[Termes IGN] couplage GNSS-INS
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] lidar mobile
[Termes IGN] pont
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Emerging mobile LiDAR mapping systems exhibit great potential as an alternative for mapping urban environments. Such systems can acquire high-quality, dense point clouds that capture detailed information over an area of interest through efficient field surveys. However, automatically recognizing and semantically segmenting different components from the point clouds with efficiency and high accuracy remains a challenge. Towards this end, this study proposes a semantic segmentation framework to simultaneously classify bridge components and road infrastructure using mobile LiDAR point clouds while providing the following contributions: 1) a deep learning approach exploiting graph convolutions is adopted for point cloud semantic segmentation; 2) cross-labeling and transfer learning techniques are developed to reduce the need for manual annotation; and 3) geometric quality control strategies are proposed to refine the semantic segmentation results. The proposed framework is evaluated using data from two mobile mapping systems along an interstate highway with 27 highway bridges. With the help of the proposed cross-labeling and transfer learning strategies, the deep learning model achieves an overall accuracy of 84% using limited training data. Moreover, the effectiveness of the proposed framework is verified through test covering approximately 42 miles along the interstate highway, where substantial improvement after quality control can be observed. Numéro de notice : A2022-814 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.ophoto.2022.100023 Date de publication en ligne : 24/10/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101975
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100023[article]An unsupervised framework for extracting multilane roads from OpenStreetMap / Kunkun Wu in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
![]()
[article]
Titre : An unsupervised framework for extracting multilane roads from OpenStreetMap Type de document : Article/Communication Auteurs : Kunkun Wu, Auteur ; Zhong Xie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2322 - 2344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] apprentissage non-dirigé
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] OpenStreetMap
[Termes IGN] polygone
[Termes IGN] regroupement de pics de densité
[Termes IGN] route
[Termes IGN] segment de droite
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Multilane roads are a set of approximately parallel line segments representing the same road in large-scale vector maps. They must be extracted first in cartographic generalization. There are numerous multilane roads in the easily accessible OpenStreetMap (OSM) dataset. For this dataset, polygon-based methods have achieved state-of-the-art performance. However, traditional polygon-based methods usually rely on manually labeled data, which means they are time-consuming and labor-intensive. To address this problem, an unsupervised framework for extracting multilane roads is proposed in this study. Road segments were first grouped to form the road polygons. A set of shape descriptors was formulated to reduce the dimensions of individual road polygons into conceptual points. Next, dimensional shape descriptors were standardized using logarithmic standardization. The density peaks clustering (DPC) algorithm was employed to classify these points. Then, cluster tags were identified manually to recognize which clusters represent multilane polygons. Finally, post-processing learning from the concept of assimilation is proposed to fill holes and remove islands. Experiments were conducted to extract multilane roads with datasets from three cities: Wuhan, Beijing and Munich. The experimental results show that the proposed framework effectively extracted multilane roads without any labels with accuracy levels comparable to those of supervised methods. Numéro de notice : A2022-797 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2107208 Date de publication en ligne : 05/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2107208 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101956
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022) . - pp 2322 - 2344[article]Automatic vectorization of fluvial corridor features on historical maps to assess riverscape changes / Samuel Dunesme in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)
PermalinkEvaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments / Sercan Gülci in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
PermalinkA joint deep learning network of point clouds and multiple views for roadside object classification from lidar point clouds / Lina Fang in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)
PermalinkApplication of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
PermalinkIncremental road network update method with trajectory data and UAV remote sensing imagery / Jianxin Qin in ISPRS International journal of geo-information, vol 11 n° 10 (October 2022)
PermalinkSpatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding / Faxi Yuan in Computers, Environment and Urban Systems, vol 97 (October 2022)
Permalink3D LiDAR aided GNSS/INS integration fault detection, localization and integrity assessment in urban canyons / Zhipeng Wang in Remote sensing, vol 14 n° 18 (September-2 2022)
PermalinkA map matching-based method for electric vehicle charging station placement at directional road segment level / Zhoulin Yu in Sustainable Cities and Society, vol 84 (September 2022)
PermalinkIdentification of urban agglomeration spatial range based on social and remote-sensing data - For evaluating development level of urban agglomerations / Shuai Zhang in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
PermalinkA model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])
Permalink