Descripteur
Documents disponibles dans cette catégorie (899)


Etendre la recherche sur niveau(x) vers le bas
A hierarchical multiview registration framework of TLS point clouds based on loop constraint / Hao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
![]()
[article]
Titre : A hierarchical multiview registration framework of TLS point clouds based on loop constraint Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Li Yan, Auteur ; Hong Xie, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de points
[Termes IGN] approche hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] superposition de données
[Termes IGN] traitement de semis de pointsRésumé : (auteur) Automatic registration of multiple point clouds is a significant preprocessing step for 3D computer vision tasks including semantic segmentation, 3D modelling, change detection, etc. Many methods were proposed to deal with this problem and yet most of them are not fully utilizing the redundant information offered by multiple common overlaps among point clouds. The existing methods are also inefficient when dealing with large-scale point clouds. In this paper, a novel automatic registration framework is presented to align point clouds efficiently and robustly. First, the overall number of scans is grouped into several scan-blocks by a proposed blocking strategy, and we build the pairwise relationship among scans through a fully connected graph in each scan-block. Second, perform loop-based coarse registration in each scan-block using a proposed false matches removal strategy. The proposed strategy can effectively identify grossly wrong scan-to-scan matches. Third, the minimum spanning tree is extracted from the graph, and ICP is applied along its edges. Moreover, the Lu–Milios algorithm is used to further optimize all poses at once by utilizing all redundant information in each scan-block. Finally, global block-to-block registration aligns all scan-blocks into a uniform coordinate reference. We test our framework on challenging WHU-TLS datasets, ETH datasets, and Robotic 3D Scan datasets to evaluate the efficiency, accuracy, as well as robustness. The experiment results show that our method achieves the state-of-the-art accuracy, while the time performance is improved by more than 30% compared with the state-of-the-art algorithms. Our source code is made available at https://github.com/WuHao-WHU/HL-MRF for benchmarking purposes. Numéro de notice : A2023-008 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.004 Date de publication en ligne : 19/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102112
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 65 - 76[article]Production of orthophoto map using mobile photogrammetry and comparative assessment of cost and accuracy with satellite imagery for corridor mapping: a case study in Manesar, Haryana, India / Manuj Dev in Annals of GIS, vol 29 n° 1 (January 2023)
![]()
[article]
Titre : Production of orthophoto map using mobile photogrammetry and comparative assessment of cost and accuracy with satellite imagery for corridor mapping: a case study in Manesar, Haryana, India Type de document : Article/Communication Auteurs : Manuj Dev, Auteur ; Shetru M. Veerabhadrappa, Auteur ; Ashutosh Kainthola, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 163 - 176 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] aérotriangulation
[Termes IGN] analyse comparative
[Termes IGN] image panoramique
[Termes IGN] image satellite
[Termes IGN] modèle stéréoscopique
[Termes IGN] orthoimage
[Termes IGN] orthophotocarte
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] système de numérisation mobileRésumé : (auteur) The study aims to find a low-cost alternate technology to get imagery, using mobile platform, and produce digital orthophoto for corridor mapping, with a higher degree of accuracy and which can reduce the lag time of acquisition of data. The present study uses digital single-lens reflex cameras, mounted on a mobile vehicle, and acquisition of data in the video format rather than still photographs, as traditionally used in mobile mapping systems. The videos are used to create a set of images and orthophotos. A widespread ground control points were recorded in the study area, using the global navigation satellite system receiver, which measured the control points in real-time kinematic mode. Generation of digital orthophoto has been completed using the captured mobile imagery and ground control point. Furthermore, procurement of satellite imagery and aerial triangulation using ground control points have been done. While comparing the planimetric accuracy of orthophoto against satellite imagery using the ground control points, the achieved root mean square error value of produced orthophoto is 0.171 m in X axis and 0.205 m in Y axis. However, for Cartosat -1 satellite imagery, the RMSE value for X is 1.22 m and for Y is 1.98 m. This research proposes the alternate low-cost mobile mapping method to capture the imagery for orthophoto production. The cost of orthophoto production from mobile image was found 77% cheaper than the orthophoto cost from fresh/latest satellite imagery procurement, while the overall production was 70% cost-effective than the orthophoto maps made from archived imagery. Numéro de notice : A2023-161 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/19475683.2022.2141853 Date de publication en ligne : 12/11/2022 En ligne : https://doi.org/10.1080/19475683.2022.2141853 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102864
in Annals of GIS > vol 29 n° 1 (January 2023) . - pp 163 - 176[article]Automatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
![]()
[article]
Titre : Automatic registration of point cloud and panoramic images in urban scenes based on pole matching Type de document : Article/Communication Auteurs : Yuan Wang, Auteur ; Yuhao Li, Auteur ; Yiping Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103083 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de formes
[Termes IGN] chevauchement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] image virtuelle
[Termes IGN] optimisation par essaim de particules
[Termes IGN] points registration
[Termes IGN] recalage d'image
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] zone tamponRésumé : (auteur) Given the initial calibration of multiple sensors, the fine registration between Mobile Laser Scanning (MLS) point clouds and panoramic images is still challenging due to the unforeseen movement and temporal misalignment while collecting. To tackle this issue, we proposed a novel automatic method to register the panoramic images and MLS point clouds based on the matching of pole objects. Firstly, 2D pole instances in the panoramic images are extracted by a semantic segmentation network and then optimized. Secondly, every corresponding frustum point cloud of each pole instance is obtained by a shape-adaptive buffer region in the panoramic image, and the 3D pole object is extracted via a combination of slicing, clustering, and connected domain analysis, then all 3D pole objects are fused. Finally, 2D and 3D pole objects are re-projected onto virtual images respectively, and then fine 2D-3D correspondences are collected through maximizing pole overlapping area by Particle Swarm Optimization (PSO). The accurate extrinsic orientation parameters are acquired by the Efficient Perspective-N-Point (EPnP). The experiments indicate that the proposed method performs effectively on two challenging urban scenes with an average registration error of 2.01 pixels (with RMSE 0.88) and 2.35 pixels (with RMSE 1.03), respectively. Numéro de notice : A2022-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103083 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103083 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102011
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103083[article]PKS: A photogrammetric key-frame selection method for visual-inertial systems built on ORB-SLAM3 / Arash Azimi in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
![]()
[article]
Titre : PKS: A photogrammetric key-frame selection method for visual-inertial systems built on ORB-SLAM3 Type de document : Article/Communication Auteurs : Arash Azimi, Auteur ; Ali Hosseininaveh Ahmadabadian, Auteur ; Fabio Remondino, Auteur Année de publication : 2022 Article en page(s) : pp 18 - 32 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] alignement
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] centrale inertielle
[Termes IGN] centre de gravité
[Termes IGN] déformation d'image
[Termes IGN] géoréférencement direct
[Termes IGN] méthode heuristique
[Termes IGN] semis de points
[Termes IGN] seuillage d'image
[Termes IGN] structure-from-motion
[Termes IGN] vision par ordinateurRésumé : (auteur) Key-frame selection methods were developed in the past years to reduce the complexity of frame processing in visual odometry (VO) and visual simultaneous localization and mapping (VSLAM) algorithms. Key-frames help increasing algorithm's performances by sparsifying frames while maintaining its accuracy and robustness. Unlike current selection methods that rely on many heuristic thresholds to decide which key-frame should be selected, this paper proposes a photogrammetric-based key-frame selection method built upon ORB-SLAM3. The proposed algorithm, named Photogrammetric Key-frame Selection (PKS), replaces static heuristic thresholds with photogrammetric principles, ensuring algorithm’s robustness and better point cloud quality. A key-frame is chosen based on adaptive thresholds and the Equilibrium Of Center Of Gravity (ECOG) criteria as well as Inertial Measurement Unit (IMU) observations. To evaluate the proposed PKS method, the European Robotics Challenge (EuRoC) and an in-house datasets are used. Quantitative and qualitative evaluations are made by comparing trajectories, point clouds quality and completeness and Absolute Trajectory Error (ATE) in mono-inertial and stereo-inertial modes. Moreover, for the generated dense point clouds, extensive evaluations, including plane-fitting error, model deformation, model alignment error, and model density and quality, are performed. The results show that the proposed algorithm improves ORB-SLAM3 positioning accuracy by 18% in stereo-inertial mode and 20% in mono-inertial mode without the use of heuristic thresholds, as well as producing a more complete and accurate point cloud up to 50%. The open-source code of the presented method is available at https://github.com/arashazimi0032/PKS. Numéro de notice : A2022-664 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.07.003 Date de publication en ligne : 12/07/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.07.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101525
in ISPRS Journal of photogrammetry and remote sensing > vol 191 (September 2022) . - pp 18 - 32[article]Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
![]()
[article]
Titre : Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1317 - 1342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] distorsion d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] hauteur du bâti
[Termes IGN] image Streetview
[Termes IGN] lever tachéométrique
[Termes IGN] modèle numérique de surface
[Termes IGN] porteRésumé : (auteur) Street view imagery such as Google Street View is widely used in people’s daily lives. Many studies have been conducted to detect and map objects such as traffic signs and sidewalks for urban built-up environment analysis. While mapping objects in the horizontal dimension is common in those studies, automatic vertical measuring in large areas is underexploited. Vertical information from street view imagery can benefit a variety of studies. One notable application is estimating the lowest floor elevation, which is critical for building flood vulnerability assessment and insurance premium calculation. In this article, we explored the vertical measurement in street view imagery using the principle of tacheometric surveying. In the case study of lowest floor elevation estimation using Google Street View images, we trained a neural network (YOLO-v5) for door detection and used the fixed height of doors to measure doors’ elevation. The results suggest that the average error of estimated elevation is 0.218 m. The depthmaps of Google Street View were utilized to traverse the elevation from the roadway surface to target objects. The proposed pipeline provides a novel approach for automatic elevation estimation from street view imagery and is expected to benefit future terrain-related studies for large areas. Numéro de notice : A2022-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1981334 Date de publication en ligne : 06/10/2021 En ligne : https://doi.org/10.1080/13658816.2021.1981334 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100970
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1317 - 1342[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022071 SL Revue Centre de documentation Revues en salle Disponible Fusing Sentinel-2 and Landsat 8 satellite images using a model-based method / Jakob Sigurdsson in Remote sensing, vol 14 n° 13 (July-1 2022)
Permalink3D browsing of wide-angle fisheye images under view-dependent perspective correction / Mingyi Huang in Photogrammetric record, vol 37 n° 178 (June 2022)
PermalinkTrue orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points / Mojdeh Ebrahimikia in Photogrammetric record, vol 37 n° 178 (June 2022)
PermalinkCalibration of a light hemispherical radiance field imaging system / Manchun Lei in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)
Permalink3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation / Heyang Thomas Li in The Visual Computer, vol 38 n° 5 (May 2022)
PermalinkHybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy / Norbert Haala in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
PermalinkAn approach to extracting digital elevation model for undulating and hilly terrain using de-noised stereo images of Cartosat-1 sensor / Litesh Bopche in Applied geomatics, vol 14 n° 1 (March 2022)
PermalinkPermalinkPermalinkPermalink