Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > fusion d'images
fusion d'imagesVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening / Hao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening Type de document : Article/Communication Auteurs : Hao Zhang, Auteur ; Jiayi Ma, Auteur Année de publication : 2021 Article en page(s) : pp 223 - 239 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] gradient
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] régressionRésumé : (auteur) Pansharpening aims to fuse low-resolution multi-spectral image and high-resolution panchromatic (PAN) image to produce a high-resolution multi-spectral (HRMS) image. In this paper, a new residual learning network based on gradient transformation prior, termed as GTP-PNet, is proposed to generate the high-quality HRMS image with accurate spectral distribution as well as reasonable spatial structure. Different from previous deep models that only rely on supervision of the HRMS reference image, we introduce the gradient transformation prior to the deep model, so as to improve the solution accuracy. Our model consists of two networks, namely gradient transformation network (TNet) and pansharpening network (PNet). TNet is committed to seeking the nonlinear mapping between gradients of PAN and HRMS images, which is essentially a spatial relationship regression of imaging bands in different ranges. PNet is the residual learning network used to generate the HRMS image, which is not only supervised by the HRMS reference image, but also constrained by the trained TNet. As a result, the HRMS image generated by PNet not only approximates the HRMS reference image in the spectral distribution, but also conforms to the gradient transformation prior in the spatial structure. Experimental results demonstrate the significant superiority of our method over the current state-of-the-arts in terms of both subjective visual effect and quantitative metrics. We also apply our method to produce the HR normalized difference vegetation index in remote sensing, which can achieve the best performance. Moreover, our method is much competitive compared with the state-of-the-art alternatives in running efficiency. Numéro de notice : A2021-089 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.014 date de publication en ligne : 11/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96859
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 223 - 239[article]FuNet: A novel road extraction network with fusion of location data and remote sensing imagery / Kai Zhou in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
![]()
[article]
Titre : FuNet: A novel road extraction network with fusion of location data and remote sensing imagery Type de document : Article/Communication Auteurs : Kai Zhou, Auteur ; Yan Xie, Auteur ; Zhan Gao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 10 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] amélioration du contraste
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] connexité (topologie)
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (auteur) Road semantic segmentation is unique and difficult. Road extraction from remote sensing imagery often produce fragmented road segments leading to road network disconnection due to the occlusion of trees, buildings, shadows, cloud, etc. In this paper, we propose a novel fusion network (FuNet) with fusion of remote sensing imagery and location data, which plays an important role of location data in road connectivity reasoning. A universal iteration reinforcement (IteR) module is embedded into FuNet to enhance the ability of network learning. We designed the IteR formula to repeatedly integrate original information and prediction information and designed the reinforcement loss function to control the accuracy of road prediction output. Another contribution of this paper is the use of histogram equalization data pre-processing to enhance image contrast and improve the accuracy by nearly 1%. We take the excellent D-LinkNet as the backbone network, designing experiments based on the open dataset. The experiment result shows that our method improves over the compared advanced road extraction methods, which not only increases the accuracy of road extraction, but also improves the road topological connectivity. Numéro de notice : A2021-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10010039 date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.3390/ijgi10010039 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97055
in ISPRS International journal of geo-information > vol 10 n° 1 (January 2021) . - n° 10[article]Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition Type de document : Article/Communication Auteurs : Yuanyang Bu, Auteur ; Yong-Qiang Zhao, Auteur ; Jize Xue, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 648 - 662 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] calcul tensoriel
[Termes descripteurs IGN] équation de Laplace
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] tenseur
[Termes descripteurs IGN] théorie des variétésRésumé : (auteur) We propose a novel graph Laplacian-guided coupled tensor decomposition (gLGCTD) model for fusion of hyperspectral image (HSI) and multispectral image (MSI) for spatial and spectral resolution enhancements. The coupled Tucker decomposition is employed to capture the global interdependencies across the different modes to fully exploit the intrinsic global spatial–spectral information. To preserve local characteristics, the complementary submanifold structures embedded in high-resolution (HR)-HSI are encoded by the graph Laplacian regularizations. The global spatial–spectral information captured by the coupled Tucker decomposition and the local submanifold structures are incorporated into a unified framework. The gLGCTD fusion framework is solved by a hybrid framework between the proximal alternating optimization (PAO) and the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real data sets demonstrate that the gLGCTD fusion method is superior to state-of-the-art fusion methods with a more accurate reconstruction of the HR-HSI. Numéro de notice : A2021-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992788 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992788 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96738
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 648 - 662[article]A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Farzaneh Dadrass Javan, Auteur ; Farhad Samadzadegan, Auteur ; Soroosh Mehravar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 101 - 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] affinage d'image
[Termes descripteurs IGN] analyse de variance
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Kompsat
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image Ikonos
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] image Pléiades-HR
[Termes descripteurs IGN] image Quickbird
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] netteté
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] pouvoir de résolution spectraleRésumé : (auteur) Pan-sharpening methods are commonly used to synthesize multispectral and panchromatic images. Selecting an appropriate algorithm that maintains the spectral and spatial information content of input images is a challenging task. This review paper investigates a wide range of algorithms, including 41 methods. For this purpose, the methods were categorized as Component Substitution (CS-based), Multi-Resolution Analysis (MRA), Variational Optimization-based (VO), and Hybrid and were tested on a collection of 21 case studies. These include images from WorldView-2, 3 & 4, GeoEye-1, QuickBird, IKONOS, KompSat-2, KompSat-3A, TripleSat, Pleiades-1, Pleiades with the aerial platform, and Deimos-2. Neural network-based methods were excluded due to their substantial computational requirements for operational mapping purposes. The methods were evaluated based on four Spectral and three Spatial quality metrics. An Analysis Of Variance (ANOVA) was used to statistically compare the pan-sharpening categories. Results indicate that MRA-based methods performed better in terms of spectral quality, whereas most Hybrid-based methods had the highest spatial quality and CS-based methods had the lowest results both spectrally and spatially. The revisited version of the Additive Wavelet Luminance Proportional Pan-sharpening method had the highest spectral quality, whereas Generalized IHS with Best Trade-off Parameter with Additive Weights showed the highest spatial quality. CS-based methods generally had the fastest run-time, whereas the majority of methods belonging to MRA and VO categories had relatively long run times. Numéro de notice : A2021-014 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.001 date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96418
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 101 - 117[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Unmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Unmixing-based Sentinel-2 downscaling for urban land cover mapping Type de document : Article/Communication Auteurs : Fei Xu, Auteur ; Ben Somers, Auteur Année de publication : 2021 Article en page(s) : pp 133 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] Berlin
[Termes descripteurs IGN] Bruxelles
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] Cologne
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] occupation du solRésumé : (auteur) With the launch of Sentinel-2 new opportunities for large scale urban mapping arise. However, the spectral information embedded in the Sentinel-2 20 m spatial resolution bands cannot yet be fully explored in heterogeneous urban landscapes. The 20 m image pixels are often composed of different land covers, resulting in a difficult to interpret mixed pixel spectrum. Here, we propose an unmixing-based image fusion algorithm (UnFuSen2) that self-adapts to the spectral variability of varying land covers and improves the image fusion accuracy by constraining the unmixing equations on the basis of spectral mixing models and the correlation between spectral bands of coarse and fine spatial resolution, respectively. When compared to alternative state-of-the-art downscaling methods UnFuSen2 consistently showed the highest accuracy when applied across test sites in three different European cities (RMSEUnFuSen2 = 203 vs RMSEalternatives = [252, 337]). In a next step, we applied Multiple Endmember Spectral Mixture Analysis (MESMA) on the downscaled Sentinel-2 image cube (i.e. ten 10 m bands) to generate subpixel urban land cover fractions. We compared our MESMA results against the traditional MESMA output as applied on the original Sentinel-2 image cube (i.e. four 10 m bands and six 20 m bands) and tested its robustness against reference data obtained over all three study sites. Results revealed an average decrease in RMSE of respectively 18% and 8% for impervious surface and vegetation fractions when our approach was compared to the traditional MESMA outcomes. Numéro de notice : A2021-015 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.009 date de publication en ligne : 26/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96419
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 133 - 154[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection / Chandi Witharana in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkBuilding change detection using a shape context similarity model for LiDAR data / Xuzhe Lyu in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkfusionImage: An R package for pan‐sharpening images in open source software / Fulgencio Cánovas‐García in Transactions in GIS, Vol 24 n° 5 (October 2020)
PermalinkComparison of tree-based classification algorithms in mapping burned forest areas / Dilek Kucuk Matci in Geodetski vestnik, vol 64 n° 3 (September - November 2020)
PermalinkPansharpening: context-based generalized Laplacian pyramids by robust regression / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkCan SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkAn integrated approach to registration and fusion of hyperspectral and multispectral images / Yuan Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkA Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkCombining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture / Dino Lenco in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
PermalinkUnsupervised classification of multispectral images embedded with a segmentation of panchromatic images using localized clusters / Ting Mao in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
Permalink