Descripteur


Etendre la recherche sur niveau(x) vers le bas
Soil erosion assessment using RUSLE model and its validation by FR probability model / Amiya Gayen in Geocarto international, vol 35 n° 15 ([01/11/2020])
![]()
[article]
Titre : Soil erosion assessment using RUSLE model and its validation by FR probability model Type de document : Article/Communication Auteurs : Amiya Gayen, Auteur ; Sunil Saha, Auteur ; Hamid Reza Pourghasemi, Auteur Année de publication : 2020 Article en page(s) : pp 1750 - 1768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] érosion hydrique
[Termes descripteurs IGN] fréquence
[Termes descripteurs IGN] Inde
[Termes descripteurs IGN] modèle RUSLE
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] pente
[Termes descripteurs IGN] surveillance géologique
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) The objective of the current study is to estimate the annual average soil loss through RUSLE model and furthermore assess the soil erosion risk and its distribution using frequency ratio (FR) probability algorithm. At first, soil erosion risk zones were identified using FR model by the consideration 14 soil erosion conditioning factors such as land use (LU/LC), slope, slope aspect, normalized difference vegetation index (NDVI), altitude, plan curvature, stream power index, distance from river, road, and lineament, soil types, rainfall erosivity, slope length and lineament density. Secondly, the spatial pattern of annual average soil loss rates was estimated using RUSLE model with consideration of five factors such as, rainfall erosivity (R), cover management (C), slope length (LS), soil erodability (K), and conservation practice factors (P). In order to map soil erosion susceptibility by the FR model, dataset divided randomly into parts 70/30 percent for training and validation purposes, respectively. Based on the FR value, the susceptibility map was reclassified into five different critical erosion probability zones. Among this, the severe and high erosion zones occupy 13.69% and 16.26%, respectively, of the total area, where as low and very low susceptibility zones together constitute 32.98% of the River Basin. The assessed high amount of average annual soil erosion (more than 100 t/ha/year) is occupied 9.55% of the total study area. It is conclude that high soil erosion susceptibility and yearly average soil loss were performed in this study area. Therefore, the produced soil erosion susceptibility maps and annual average soil erosion map can be very useful for primary land use planning and soil erosion hazard mitigation purpose for prioritizing areas. Numéro de notice : A2020-660 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581272 date de publication en ligne : 21/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96134
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1750 - 1768[article]Spatio-temporal evolution, future trend and phenology regularity of net primary productivity of forests in Northeast China / Chunli Wang in Remote sensing, vol 12 n° 21 (November 2020)
![]()
[article]
Titre : Spatio-temporal evolution, future trend and phenology regularity of net primary productivity of forests in Northeast China Type de document : Article/Communication Auteurs : Chunli Wang, Auteur ; Qun’Ou Jiang, Auteur ; Xiangzheng Deng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 3670 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] croissance végétale
[Termes descripteurs IGN] développement durable
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] production primaire brute
[Termes descripteurs IGN] variation saisonnière
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Net Primary Productivity (NPP) is one of the significant indicators to measure environmental changes; thus, the relevant study of NPP in Northeast China, Asia, is essential to climate changes and ecological sustainable development. Based on the Global Production Efficiency (GLO-PEM) model, this study firstly estimated the NPP in Northeast China, from 2001 to 2019, and then analyzed its spatio-temporal evolution, future changing trend and phenology regularity. Over the years, the NPP of different forests type in Northeast China showed a gradual increasing trend. Compared with other different time stages, the high-value NPP (700–1300 gC·m−2·a−1) in Changbai Mountain, from 2017 to 2019, is more widely distributed. For instance, the NPP has an increasing rate of 6.92% compared to the stage of 2011–2015. Additionally, there was a significant advance at the start of the vegetation growth season (SOS), and a lag at the end of the vegetation growth season (EOS), from 2001 to 2019. Thus, the whole growth period of forests in Northeast China became prolonged with the change of phenology. Moreover, analysis on the sustainability of NPP in the future indicates that the reverse direction feature of NPP change will be slightly stronger than the co-directional feature, meaning that about 30.68% of the study area will switch from improvement to degradation. To conclude, these above studies could provide an important reference for the sustainable development of forests in Northeast China. Numéro de notice : A2020-719 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12213670 date de publication en ligne : 09/11/2020 En ligne : https://doi.org/10.3390/rs12213670 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96308
in Remote sensing > vol 12 n° 21 (November 2020) . - n° 3670[article]Unfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Unfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation Type de document : Article/Communication Auteurs : Boxi Shen, Auteur ; Xiang Xu, Auteur ; Jun Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 683 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] appariement de cartes
[Termes descripteurs IGN] circulation urbaine
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] mobilité urbaine
[Termes descripteurs IGN] modèle conceptuel de données localisées
[Termes descripteurs IGN] modèle conceptuel de flux
[Termes descripteurs IGN] Shenzhen
[Termes descripteurs IGN] taxi
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] trajetRésumé : (auteur) Taxi mobility data plays an important role in understanding urban mobility in the context of urban traffic. Specifically, the taxi is an important part of urban transportation, and taxi trips reflect human behaviors and mobility patterns, allowing us to identify the spatial variety of such patterns. Although taxi trips are generated in the form of network flows, previous works have rarely considered network flow patterns in the analysis of taxi mobility data; Instead, most works focused on point patterns or trip patterns, which may provide an incomplete snapshot. In this work, we propose a novel approach to explore the spatial-temporal patterns of taxi travel by considering point, trip and network flow patterns in a simultaneous fashion. Within this approach, an improved network kernel density estimation (imNKDE) method is first developed to estimate the density of taxi trip pick-up and drop-off points (ODs). Next, the correlation between taxi service activities (i.e., ODs) and land-use is examined. Then, the trip patterns of taxi trips and its corresponding routes are analyzed to reveal the correlation between trips and road structure. Finally, network flow analysis for taxi trip among areas of varying land-use types at different times are performed to discover spatial and temporal taxi trip ODs from a new perspective. A case study in the city of Shenzhen, China, is thoroughly presented and discussed for illustrative purposes. Numéro de notice : A2020-730 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110683 date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110683 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96337
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 683[article]Monitoring population dynamics in the Pearl River Delta from 2000 to 2010 / Sisi Yu in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Monitoring population dynamics in the Pearl River Delta from 2000 to 2010 Type de document : Article/Communication Auteurs : Sisi Yu, Auteur ; ZengXiang Zhang, Auteur ; Fang Liu, Auteur Année de publication : 2020 Article en page(s) : pp 1511 - 1526 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] agglomération
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] delta de la rivière des perles
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] image DMSP-OLS
[Termes descripteurs IGN] Kouangtoung (Chine)
[Termes descripteurs IGN] prise de vue nocturne
[Termes descripteurs IGN] recensement démographique
[Termes descripteurs IGN] répartition géographique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance de l'urbanisationRésumé : (auteur) Although numerous literatures have documented the monitoring of population distributions and dynamics for socio-economic development, environmental protection, and urban planning on different scales, little attention has been paid to long-term and multi-frequency population evolution on urban agglomeration scale, especially in non-census years. Furthermore, although multi models have been applied to population spatialization based on night-time light imagery (NLT) and census data, their accuracy needs to be further improved. Selected the Pearl River Delta (PRD), China as the study area, this work aimed to solve the aforementioned problems by constructing the residential extent extraction index (REEI) and employing the population growth theory and ‘DN density–population density’ model. Results indicated that the proposed approaches were feasible to optimize NTL products and simulate populations in both census (2000, 2010) and non-census (2005) years. Population evolution in the PRD presented distinct differences from space and over time, and mainly driven by socioeconomic development. Numéro de notice : A2020-617 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1576778 date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1080/10106049.2019.1576778 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95993
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1511 - 1526[article]Object-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Object-based classification of mixed forest types in Mongolia Type de document : Article/Communication Auteurs : E. Nyamjargal, Auteur ; D. Amarsaikhan, Auteur ; A. Munkh-Erdene, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1615 - 1626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] Mongolie
[Termes descripteurs IGN] peuplement mélangéRésumé : (auteur) The aim of this study is to produce updated forest map of the Bogdkhan Mountain, Mongolia using multitemporal Sentinel-2A images. The target area has highly mixed forest types and it is very difficult to differentiate the fuzzy boundaries among different forest types. To extract the forest class information, an object-based classification technique is applied and a rule-base to separate the mixed classes is developed. The rule-base uses a hierarchy of rules describing different conditions under which the actual classification has to be performed. To compare the result of the developed method with a result of a pixel-based approach, a Bayesian maximum likelihood classification is applied. The final result indicates overall accuracy of 90.87% for the object-based classification, while for the pixel-based approach it is 79.89%. Overall, the research indicates that the object-based method that uses a thoroughly defined segmentation and a well-constructed rule-base can significantly improve the classification of mixed forest types and produce of a reliable forest map. Numéro de notice : A2020-619 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583775 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95995
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1615 - 1626[article]An integration of bioclimatic, soil, and topographic indicators for viticulture suitability using multi-criteria evaluation: a case study in the Western slopes of Jabal Al Arab—Syria / Karam Alsafadi in Geocarto international, vol 35 n° 13 ([01/10/2020])
PermalinkCoupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones / Xun Liang in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkGEBCO Gridded Bathymetric Datasets for mapping Japan Trench geomorphology by means of GMT scripting toolset / Polina Lemenkova in Geodesy and cartography, vol 46 n° 3 (October 2020)
PermalinkA graph convolutional network model for evaluating potential congestion spots based on local urban built environments / Kun Qin in Transactions in GIS, Vol 24 n° 5 (October 2020)
PermalinkMapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
PermalinkNetwork-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkPrediction of RTK positioning integrity for journey planning / A. El-Mowafy in Journal of applied geodesy, vol 14 n° 4 (October 2020)
PermalinkApplication of UAV photogrammetry with LiDAR data to facilitate the estimation of tree locations and DBH values for high-value timber species in Northern Japanese mixed-wood forests / Kyaw Thu Moe in Remote sensing, vol 12 n° 17 (September 2020)
PermalinkApplying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
PermalinkL-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia / Bambang H Trisasongko in Geocarto international, vol 35 n° 12 ([01/09/2020])
Permalink