Descripteur


Etendre la recherche sur niveau(x) vers le bas
Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning Type de document : Article/Communication Auteurs : Maryam Pourshamsi, Auteur ; Junshi Xia, Auteur ; Naoto Yokoya, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] Gabon
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] Rotation Forest classification
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Forest height is an important forest biophysical parameter which is used to derive important information about forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investigated. This will be conducted using different machine learning algorithms including Random Forest (RFs), Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various PolSAR parameters are required as input variables to ensure a successful height retrieval across different forest heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different polarimetric variables. To examine the dependency of the algorithm on input training samples, three different subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated region, short/sparse vegetation (0–20 m), vegetation with mid-range height (20–40 m) to tall/dense ones (40–60 m); subset 2 covers mostly the dense vegetated area with height ranges 40–60 m; and subset 3 mostly covers the non-vegetated to short/sparse vegetation (0–20 m) .The trained algorithms were used to estimate the height for the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived height showing high accuracy (with the average R2 = 0.70 and RMSE = 10 m between all the algorithms and different training samples). The results confirm that it is possible to estimate forest canopy height using PolSAR parameters together with a small coverage of LiDAR height as training data. Numéro de notice : A2021-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.008 date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.008 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96846
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 79 - 94[article]Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping Type de document : Article/Communication Auteurs : Mthembeni Mngadi, Auteur ; John Odindi, Auteur ; Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] Eucalyptus (genre)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] KwaZulu-Natal (Afrique du Sud)
[Termes descripteurs IGN] Pinus (genre)
[Termes descripteurs IGN] télédétection spatialeRésumé : (Auteur) The successful launch and operation of the Sentinel satellite platform has provided access to freely available remotely sensed data useful for commercial forest species discrimination. Sentinel – 1 (S1) with a synthetic aperture radar (SAR) sensor and Sentinel – 2 (S2) multi-spectral sensor with additional and strategically positioned bands offer great potential for providing reliable information for discriminating and mapping commercial forest species. In this study, we sought to determine the value of S1 and S2 data characteristics in discriminating and mapping commercial forest species. Using linear discriminant analysis (LDA) algorithm, S2 multi-spectral imagery showed an overall classification accuracy of 84% (kappa = 0.81), with bands such as the red-edge (703.9–740.2 nm), narrow near infrared (835.1–864.8 nm), and short wave infrared (1613.7–2202.4 nm) particularly influential in discriminating individual forest species stands. When Sentinel 2’s spectral wavebands were fused with Sentinel 1’s (SAR) VV and VH polarimetric modes, overall classification accuracies improved to 87% (kappa = 0.83) and 88% (kappa = 0.85), respectively. These findings demonstrate the value of combining Sentinel’s multispectral and SAR structural information characteristics in improving commercial forest species discrimination. These, in addition to the sensors free availability, higher spatial resolution and larger swath width, offer unprecedented opportunities for improved local and large scale commercial forest species discrimination and mapping. Numéro de notice : A2021-050 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585483 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585483 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96719
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 1 - 12[article]Modeling the risk of robbery in the city of Tshwane, South Africa / Nicolas Kemp in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)
![]()
[article]
Titre : Modeling the risk of robbery in the city of Tshwane, South Africa Type de document : Article/Communication Auteurs : Nicolas Kemp, Auteur ; Gregory D. Breetzke, Auteur ; Anthony Cooper, Auteur Année de publication : 2021 Article en page(s) : pp 29 - 42 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Afrique du sud (état)
[Termes descripteurs IGN] criminalité
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] prévention des risques
[Termes descripteurs IGN] sécurité civile
[Termes descripteurs IGN] zone à risqueRésumé : (auteur) In this study, we model the risk of robbery in the City of Tshwane in South Africa. We use the collective knowledge of two prominent spatial theories of crime (social disorganization theory, and crime pattern theory) to guide the selection of data and employ rudimentary geospatial techniques to create a crude model that identifies the risk of future robbery incidents in the city. The model is validated using actual robbery incidences recorded for the city. Overall the model performs reasonably well with approximately 70% of future robbery incidences accurately identified within a small subset of the overall model. Developing countries such as South Africa are in dire need of crime risk intensity models that are simple, and not data intensive to allocate scarce crime prevention resources in a more optimal fashion. It is anticipated that this model is a first step in this regard. Numéro de notice : A2021-017 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1814872 date de publication en ligne : 10/09/2020 En ligne : https://doi.org/10.1080/15230406.2020.1814872 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96455
in Cartography and Geographic Information Science > vol 48 n° 1 (January 2021) . - pp 29 - 42[article]Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia Type de document : Article/Communication Auteurs : Meron Awoke Eshetae, Auteur ; Binyam Tesfaw Hailu, Auteur ; Sebsebe Demissew, Auteur Année de publication : 2021 Article en page(s) : pp 60 - 75 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] données environnementales
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] Ethiopie
[Termes descripteurs IGN] Musa (genre)
[Termes descripteurs IGN] surface cultivéeRésumé : (Auteur) Enset (Ensete ventricosum) feeds around 20 million people in Ethiopia and is arguably the most important crop for food security and rural livelihoods in the country. Therefore, it is significant to know its spatial characterization and distribution in the country. We use spatial overlay analysis and the maximum entropy (MaxEnt) model for characterizing and modelling, respectively. Inputs for the model include 26 environmental variables—19 bioclimatic and seven biophysical—in addition to the geospatial location of enset field data. The model result was validated using Receiver Operating Characteristic curve method and the area under the curve (AUC) with 0.842 for cultivated enset and 0.760 (wild enset). The highest prediction (>0.5) of both varieties occurred in the southwestern, south-central and north-eastern parts of Ethiopia—17,293.67 km2 (cultivated) and 40,402 km2 (wild) area. The presence of both enset is probabilistically higher at the tropic-cool/sub-humid Agroecological Zones. Numéro de notice : A2021-051 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1588392 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1588392 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96773
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 60 - 75[article]Monitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas / Nadia Ouaadi in Remote sensing of environment, Vol 251 (15 December 2020)
PermalinkCORS usage for GPS survey in the greater accra region: Advantages, limitation, and suggested remedies / Sebastian Botsyo in Journal of Geovisualization and Spatial Analysis, vol 4 n° 2 (December 2020)
PermalinkPossibility to determine highly precise geoid for Egypt territory / Moamen Awad Habib Gad in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
PermalinkStereophotogrammetry for 2-D building deformation monitoring using Kalman Filter / J.O. Odumosu in Reports on geodesy and geoinformatics, vol 110 n°1 (December 2020)
PermalinkStrategic and Acupunctural GIS Implementation within Community-Oriented Organizations: Evidence-Based Insights from a South African Participatory Action Research for Informal Settlement Upgrading / Jennifer Barella in Cartographica, vol 55 n° 4 (Winter 2020)
PermalinkAnalyse de la déforestation dans la périphérie ouest de la réserve de biosphère du Dja au Cameroun, à partir d'une série multi-annuelle d'images Landsat / Eric Wilson Tegno Nguekam in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkCartographie des cultures dans le périmètre du Loukkos (Maroc) : apport de la télédétection radar et optique / Siham Acharki in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkDétection du changement de l'étalement urbain au bas-Sahara algérien : apport de la télédétection spatiale et des SIG, cas de la ville de Biskra (Algérie) / Assoule Dechaicha in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkForêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification / Aurélien N.G. Matsaguim in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkDisplacement monitoring of upper Atbara dam based on time series InSAR / Q.Q. Wang in Survey review, vol 52 n° 375 (November 2020)
Permalink