Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Afrique (géographie politique) > Afrique du sud (état)
Afrique du sud (état)Voir aussi |
Documents disponibles dans cette catégorie (72)



Etendre la recherche sur niveau(x) vers le bas
Use of remotely sensed data to estimate tree species diversity as an indicator of biodiversity in Blouberg Nature Reserve, South Africa / Mangana Rampheri in Geocarto international, vol 37 n° 2 ([15/01/2022])
![]()
[article]
Titre : Use of remotely sensed data to estimate tree species diversity as an indicator of biodiversity in Blouberg Nature Reserve, South Africa Type de document : Article/Communication Auteurs : Mangana Rampheri, Auteur ; Timothy Dube, Auteur ; Inos Dhau, Auteur Année de publication : 2022 Article en page(s) : pp 526 - 542 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique du sud (état)
[Termes IGN] arbre (flore)
[Termes IGN] bande spectrale
[Termes IGN] biodiversité végétale
[Termes IGN] conservation de la flore
[Termes IGN] détection de changement
[Termes IGN] espèce végétale
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] régression
[Termes IGN] réserve naturelleRésumé : (auteur) We use remotely sensed data to estimate species diversity in Blouberg Nature Reserve (BNR) in the Limpopo province, South Africa to understand the state of biodiversity since communities’ involvement in conservation initiatives. To achieve this objective, Landsat series data collected before and after community involvement in biodiversity conservation were used in conjunction with selected diversity indices i.e., Shannon-Wiener Index (H’) and Simpson Index (D). Thirty 15 m × 15 m field plots were selected and all trees within each plot were identified, with the help of Botanists. Further, we applied regression analysis to determine the relationship between satellite derived tree species diversity and field observations. The results of the study demonstrated a significant (p Numéro de notice : A2022-052 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1723717 Date de publication en ligne : 16/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1723717 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99443
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 526 - 542[article]Classification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery / Simbarashe Jombo in Applied geomatics, vol 13 n° 3 (September 2021)
![]()
[article]
Titre : Classification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery Type de document : Article/Communication Auteurs : Simbarashe Jombo, Auteur ; Elhadi Adam, Auteur ; John Odindi, Auteur Année de publication : 2021 Article en page(s) : pp 373 - 387 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] arbre urbain
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce végétale
[Termes IGN] image à très haute résolution
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] indice de végétation
[Termes IGN] Johannesbourg
[Termes IGN] segmentation d'imageRésumé : (auteur) Urban trees are valuable in, inter alia, ameliorating air pollution and mitigating the effects associated with urban heat islands. The dearth of tree cover maps is a major challenge for urban planners in the management of urban trees. This work adopts remote sensing approaches to provide urban tree cover maps which can strengthen urban landscape management. Whereas traditional pixel-based classification approaches have been commonly used in image classification, they are not well-suited for urban tree mapping due to their failure to fully explore the image’s spatial and spectral characteristics. Object-based classification techniques produce improved accuracies using additional variables. This study depicts the capability of object-based image analysis (OBIA) in mapping common urban trees using very high-resolution (VHR) WorldView-2 (WV-2) imagery. The study tests the utility of WV-2 bands and other feature variables in the object-based mapping of common urban trees and other land cover classes. Furthermore, the study compares the utility of Support Vector Machine (SVM) and Random Forest (RF) in the object-based mapping of common urban trees and other land cover classes. The results show that the Normalized Difference Vegetation Index (NDVI), NIR 1 and NIR 2 bands were important in the classification of common urban trees and other land cover classes. The RF classifier performed better than SVM, with an overall accuracy of 91.9% as compared to 87.3% for SVM. The results of this study offer insight to urban authorities with knowledge on the segmentation parameters, classification methods and feature variables for mapping urban trees, valuable in urban tree management. Numéro de notice : A2021-624 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s12518-021-00358-3 Date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1007/s12518-021-00358-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98248
in Applied geomatics > vol 13 n° 3 (September 2021) . - pp 373 - 387[article]
Titre : Agroforestry : Small landholder’s tool for climate change resiliency and mitigation Type de document : Monographie Auteurs : Gopal Shukla, Éditeur scientifique ; Sumit Chakravarty, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2021 ISBN/ISSN/EAN : 978-1-83962-730-9 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Agriculture
[Termes IGN] Afrique du sud (état)
[Termes IGN] agroforesterie
[Termes IGN] biomasse forestière
[Termes IGN] changement climatique
[Termes IGN] Inde
[Termes IGN] production agricole
[Termes IGN] puits de carbone
[Termes IGN] ZimbabweIndex. décimale : 50.00 Environnement Résumé : (Editeur) The book is a collection of chapters that deal with agroforestry systems on small farms. It compiles a variety of suitable agroforestry systems that can both sequester carbon and mitigate climate change while also providing socio-economic benefits. The book also discusses the ways in which small landholders can use agroforestry to combat land degradation. Note de contenu : 1. Designation of Traditional Agroforestry Clusters for Handling Climate Change Based on the Sustainability Index in the Archipelago / By Jan Willem Hatulesila and Gun Mardiatmoko
2. Assessment of Biomass and Carbon Stock along Altitudes in Traditional Agroforestry System in Tehri District of Uttarakhand, India / By Kundan K. Vikrant, Dhanpal S. Chauhan and Raza H. Rizvi
3. Agroforestry as a Small Landholder’s Tool for Climate Change Resilience and Mitigation in Zimbabwe / By Tariro Kamuti
4. Agroforestry Trees for Fodder Production in Limpopo Province, South Africa / By Kingsley Kwabena Ayisi, Paulina Bopape-Mabapa and David Brown
5. Potential and Opportunities of Agroforestry Practices in Combating Land Degradation / By Jag Mohan Singh Tomar, Akram Ahmed, Jahangeer A. Bhat, Rajesh Kaushal, Gopal Shukla and Raj kumar
6. Farm-Forestry, Smallholder Farms and Policy Support – The Way Ahead / By Vinod Chandra PandeNuméro de notice : 26725 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.87650 Date de publication en ligne : 30/06/2021 En ligne : https://doi.org/10.5772/intechopen.87650 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99505 Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping Type de document : Article/Communication Auteurs : Mthembeni Mngadi, Auteur ; John Odindi, Auteur ; Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] carte forestière
[Termes IGN] Eucalyptus (genre)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] KwaZulu-Natal (Afrique du Sud)
[Termes IGN] Pinus (genre)
[Termes IGN] télédétection spatialeRésumé : (Auteur) The successful launch and operation of the Sentinel satellite platform has provided access to freely available remotely sensed data useful for commercial forest species discrimination. Sentinel – 1 (S1) with a synthetic aperture radar (SAR) sensor and Sentinel – 2 (S2) multi-spectral sensor with additional and strategically positioned bands offer great potential for providing reliable information for discriminating and mapping commercial forest species. In this study, we sought to determine the value of S1 and S2 data characteristics in discriminating and mapping commercial forest species. Using linear discriminant analysis (LDA) algorithm, S2 multi-spectral imagery showed an overall classification accuracy of 84% (kappa = 0.81), with bands such as the red-edge (703.9–740.2 nm), narrow near infrared (835.1–864.8 nm), and short wave infrared (1613.7–2202.4 nm) particularly influential in discriminating individual forest species stands. When Sentinel 2’s spectral wavebands were fused with Sentinel 1’s (SAR) VV and VH polarimetric modes, overall classification accuracies improved to 87% (kappa = 0.83) and 88% (kappa = 0.85), respectively. These findings demonstrate the value of combining Sentinel’s multispectral and SAR structural information characteristics in improving commercial forest species discrimination. These, in addition to the sensors free availability, higher spatial resolution and larger swath width, offer unprecedented opportunities for improved local and large scale commercial forest species discrimination and mapping. Numéro de notice : A2021-050 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585483 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585483 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96719
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 1 - 12[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021011 SL Revue Centre de documentation Revues en salle Disponible Modeling the risk of robbery in the city of Tshwane, South Africa / Nicolas Kemp in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)
![]()
[article]
Titre : Modeling the risk of robbery in the city of Tshwane, South Africa Type de document : Article/Communication Auteurs : Nicolas Kemp, Auteur ; Gregory D. Breetzke, Auteur ; Anthony K. Cooper, Auteur Année de publication : 2021 Article en page(s) : pp 29 - 42 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Afrique du sud (état)
[Termes IGN] criminalité
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] prévention des risques
[Termes IGN] protection civile
[Termes IGN] zone à risqueRésumé : (auteur) In this study, we model the risk of robbery in the City of Tshwane in South Africa. We use the collective knowledge of two prominent spatial theories of crime (social disorganization theory, and crime pattern theory) to guide the selection of data and employ rudimentary geospatial techniques to create a crude model that identifies the risk of future robbery incidents in the city. The model is validated using actual robbery incidences recorded for the city. Overall the model performs reasonably well with approximately 70% of future robbery incidences accurately identified within a small subset of the overall model. Developing countries such as South Africa are in dire need of crime risk intensity models that are simple, and not data intensive to allocate scarce crime prevention resources in a more optimal fashion. It is anticipated that this model is a first step in this regard. Numéro de notice : A2021-017 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1814872 Date de publication en ligne : 10/09/2020 En ligne : https://doi.org/10.1080/15230406.2020.1814872 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96455
in Cartography and Geographic Information Science > vol 48 n° 1 (January 2021) . - pp 29 - 42[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021011 SL Revue Centre de documentation Revues en salle Disponible Strategic and Acupunctural GIS Implementation within Community-Oriented Organizations: Evidence-Based Insights from a South African Participatory Action Research for Informal Settlement Upgrading / Jennifer Barella in Cartographica, vol 55 n° 4 (Winter 2020)
PermalinkPermalinkNear-real time forecasting and change detection for an open ecosystem with complex natural dynamics / Jasper A. Slingsby in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkTowards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa / Cecilia Masemola in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkPermalinkEvaluating the potential of the red edge channel for C3 (Festuca spp.) grass discrimination using Sentinel-2 and Rapid Eye satellite image data / Charles Otunga in Geocarto international, vol 34 n° 10 ([15/07/2019])
PermalinkRemote sensing of species diversity using Landsat 8 spectral variables / Sabelo Madonsela in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
PermalinkStand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
PermalinkLong-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa / Sibylle Vey in GPS solutions, vol 20 n° 4 (October 2016)
PermalinkThe impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
Permalink