Descripteur



Etendre la recherche sur niveau(x) vers le bas
Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method Type de document : Article/Communication Auteurs : Qiang Chen, Auteur ; Qianhao Cheng, Auteur ; Jinfei Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 158 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] analyse multicritère
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] construction
[Termes descripteurs IGN] déchet
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] morphologie
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] segmentation hiérarchique
[Termes descripteurs IGN] urbanisationRésumé : (auteur) With rapid urbanization, the disposal and management of urban construction waste have become the main concerns of urban management. The distribution of urban construction waste is characterized by its wide range, irregularity, and ease of confusion with the surrounding ground objects, such as bare soil, buildings, and vegetation. Therefore, it is difficult to extract and identify information related to urban construction waste by using the traditional single spectral feature analysis method due to the problem of spectral confusion between construction waste and the surrounding ground objects, especially in the context of very-high-resolution (VHR) remote sensing images. Considering the multi-feature analysis method for VHR remote sensing images, we propose an optimal method that combines morphological indexing and hierarchical segmentation to extract the information on urban construction waste in VHR images. By comparing the differences between construction waste and the surrounding ground objects in terms of the spectrum, geometry, texture, and other features, we selected an optimal feature subset to improve the separability of the construction waste and other objects; then, we established a classification model of knowledge rules to achieve the rapid and accurate extraction of construction waste information. We also chose two experimental areas of Beijing to validate our algorithm. By using construction waste separability quality evaluation indexes, the identification accuracy of construction waste in the two study areas was determined to be 96.6% and 96.2%, the separability indexes of the construction waste and buildings reached 1.000, and the separability indexes of the construction waste and vegetation reached 1.000 and 0.818. The experimental results show that our method can accurately identify the exposed construction waste and construction waste covered with a dust screen, and it can effectively solve the problem of spectral confusion between the construction waste and the bare soil, buildings, and vegetation. Numéro de notice : A2021-073 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010158 date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010158 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96809
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 158[article]Urban tree species identification and carbon stock mapping for urban green planning and management / MD Abdul Choudhury in Forests, vol 11 n°11 (November 2020)
![]()
[article]
Titre : Urban tree species identification and carbon stock mapping for urban green planning and management Type de document : Article/Communication Auteurs : MD Abdul Choudhury, Auteur ; Ernesto Marcheggiani, Auteur ; Francesca Despini, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1226 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] cartographie écologique
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] diamètre à hauteur de poitrine
[Termes descripteurs IGN] données allométriques
[Termes descripteurs IGN] données dendrométriques
[Termes descripteurs IGN] Emilie-Romagne (Italie)
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] photo-interprétation assistée par ordinateur
[Termes descripteurs IGN] planification urbaine
[Termes descripteurs IGN] puits de carbone
[Termes descripteurs IGN] structure-from-motion
[Termes descripteurs IGN] ville durableRésumé : (auteur) Recently, the severe intensification of atmospheric carbon has highlighted the importance of urban tree contributions in atmospheric carbon mitigations in city areas considering sustainable urban green planning and management systems. Explicit and timely information on urban trees and their roles in the atmospheric Carbon Stock (CS) are essential for policymakers to take immediate actions to ameliorate the effects of deforestation and their worsening outcomes. In this study, a detailed methodology for urban tree CS calibration and mapping was developed for the small urban area of Sassuolo in Italy. For dominant tree species classification, a remote sensing approach was applied, utilizing a high-resolution WV3 image. Five dominant species were identified and classified by applying the Object-Based Image Analysis (OBIA) approach with an overall accuracy of 78%. The CS calibration was done by utilizing an allometric model based on the field data of tree dendrometry—i.e., Height (H) and Diameter at Breast Height (DBH). For geometric measurements, a terrestrial photogrammetric approach known as Structure-from-Motion (SfM) was utilized. Out of 22 randomly selected sample plots of 100 square meters (10 m × 10 m) each, seven plots were utilized to validate the results of the CS calibration and mapping. In this study, CS mapping was done in an efficient and convenient way, highlighting higher CS and lower CS zones while recognizing the dominant tree species contributions. This study will help city planners initiate CS mapping and predict the possible CS for larger urban regions to ensure a sustainable urban green management system. Numéro de notice : A2020-757 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111226 date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.3390/f11111226 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96470
in Forests > vol 11 n°11 (November 2020) . - N° 1226[article]Using climate-sensitive 3D city modeling to analyze outdoor thermal comfort in urban areas / Rabeeh Hosseinihaghighi in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Using climate-sensitive 3D city modeling to analyze outdoor thermal comfort in urban areas Type de document : Article/Communication Auteurs : Rabeeh Hosseinihaghighi, Auteur ; Fatemeh Izadi, Auteur ; Rushikesh Padsala, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 688 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] albedo
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] ArcGIS
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] CityEngine
[Termes descripteurs IGN] climat urbain
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] modèle 3D de l'espace urbain
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] Montréal (Québec)
[Termes descripteurs IGN] planification urbaine
[Termes descripteurs IGN] températureRésumé : (auteur) With increasing urbanization, climate change poses an unprecedented threat, and climate-sensitive urban management is highly demanded. Mitigating climate change undoubtedly requires smarter urban design tools and techniques than ever before. With the continuous evolution of geospatial technologies and an added benefit of analyzing and virtually visualizing our world in three dimensions, the focus is now shifting from a traditional 2D to a more complicated 3D spatial design and assessment with increasing potential of supporting climate-responsive urban decisions. This paper focuses on using 3D city models to calculate the mean radiant temperature (Tmrt) as an outdoor thermal comfort indicator in terms of assessing the spatiotemporal distribution of heat stress on the district scale. The analysis is done to evaluate planning scenarios for a district transformation in Montreal/Canada. The research identifies a systematic workflow to assess and upgrade the outdoor thermal comfort using the contribution of ArcGIS CityEngine for 3D city modeling and the open-source model of solar longwave environmental irradiance geometry (SOLWEIG) as the climate assessment model. A statistically downscaled weather profile for the warmest year predicted before 2050 (2047) is used for climate data. The outcome shows the workflow capacity for the structured recognition of area under heat stress alongside supporting the efficient intervention, the tree placement as a passive strategy of heat mitigation. The adaptability of workflow with the various urban scale makes it an effective response to the technical challenges of urban designers for decision-making and action planning. However, the discovered technical issues in data conversion and wall surface albedo processing call for the climate assessment model improvement as future demand. Numéro de notice : A2020-728 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110688 date de publication en ligne : 19/11/2020 En ligne : https://doi.org/10.3390/ijgi9110688 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96335
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 688[article]Hierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds / Yongjun Wang in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
![]()
[article]
Titre : Hierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds Type de document : Article/Communication Auteurs : Yongjun Wang, Auteur ; Tengping Jiang, Auteur ; Jing Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 26 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme de filtrage
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre hors forêt
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] voxel
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Individual tree segmentation is essential for many applications in city management and urban ecology. Light Detection and Ranging (LiDAR) system acquires accurate point clouds in a fast and environmentally-friendly manner, which enables single tree detection. However, the large number of object categories and occlusion from nearby objects in complex environment pose great challenges in urban tree inventory, resulting in omission or commission errors. Therefore, this paper addresses these challenges and increases the accuracy of individual tree segmentation by proposing an automated method for instance recognition urban roadside trees. The proposed algorithm was implemented of unmanned aerial vehicles laser scanning (UAV-LS) data. First, an improved filtering algorithm was developed to identify ground and non-ground points. Second, we extracted tree-like objects via labeling on non-ground points using a deep learning model with a few smaller modifications. Unlike only concentrating on the global features in previous method, the proposed method revises a pointwise semantic learning network to capture both the global and local information at multiple scales, significantly avoiding the information loss in local neighborhoods and reducing useless convolutional computations. Afterwards, the semantic representation is fed into a graph-structured optimization model, which obtains globally optimal classification results by constructing a weighted indirect graph and solving the optimization problem with graph-cuts. The segmented tree points were extracted and consolidated through a series of operations, and they were finally recognized by combining graph embedding learning with a structure-aware loss function and a supervoxel-based normalized cut segmentation method. Experimental results on two public datasets demonstrated that our framework achieved better performance in terms of classification accuracy and recognition ratio of tree. Numéro de notice : A2020-665 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9100595 date de publication en ligne : 10/10/2020 En ligne : https://doi.org/10.3390/ijgi9100595 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96142
in ISPRS International journal of geo-information > vol 9 n° 10 (October 2020) . - 26 p.[article]Local color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? / Istvan G. Lauko in Geo-spatial Information Science, vol 23 n° 3 (September 2020)
![]()
[article]
Titre : Local color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? Type de document : Article/Communication Auteurs : Istvan G. Lauko, Auteur ; Adam Honts, Auteur ; Jacob Beihoff, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 222 - 236 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] couleur (variable spectrale)
[Termes descripteurs IGN] densité de la végétation
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image panoramique
[Termes descripteurs IGN] image Streetview
[Termes descripteurs IGN] indicateur environnemental
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] Milwaukee
[Termes descripteurs IGN] paysage urbain
[Termes descripteurs IGN] rayonnement proche infrarougeRésumé : (auteur) Measuring the amount of vegetation in a given area on a large scale has long been accomplished using satellite and aerial imaging systems. These methods have been very reliable in measuring vegetation coverage accurately at the top of the canopy, but their capabilities are limited when it comes to identifying green vegetation located beneath the canopy cover. Measuring the amount of urban and suburban vegetation along a street network that is partially beneath the canopy has recently been introduced with the use of Google Street View (GSV) images, made accessible by the Google Street View Image API. Analyzing green vegetation through the use of GSV images can provide a comprehensive representation of the amount of green vegetation found within geographical regions of higher population density, and it facilitates an analysis performed at the street-level. In this paper we propose a fine-tuned color based image filtering and segmentation technique and we use it to define and map an urban green environment index. We deployed this image processing method and, using GSV images as a high-resolution GIS data source, we computed and mapped the green index of Milwaukee County, a 3,082 km2 urban/suburban county in Wisconsin. This approach generates a high-resolution street-level vegetation estimate that may prove valuable in urban planning and management, as well as for researchers investigating the correlation between environmental factors and human health outcomes. Numéro de notice : A2020-563 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1805367 date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.1080/10095020.2020.1805367 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95880
in Geo-spatial Information Science > vol 23 n° 3 (September 2020) . - pp 222 - 236[article]An empirical study on the intra-urban goods movement patterns using logistics big data / Pengxiang Zhao in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
PermalinkDynamic floating stations model for emergency medical services with a consideration of traffic data / Chih-Hong Sun in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkMapping urban grey and green structures for liveable cities using a 3D enhanced OBIA approach and vital statistics / E. Banzhaf in Geocarto international, vol 35 n° 6 ([01/05/2020])
PermalinkA method for urban population density prediction at 30m resolution / Krishnachandran Balakrishnan in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
PermalinkA global analysis of cities’ geosocial temporal signatures for points of interest hours of operation / Kevin Sparks in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
PermalinkA deep learning architecture for semantic address matching / Yue Lin in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
PermalinkA framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data / Sheng Hu in Computers, Environment and Urban Systems, vol 80 (March 2020)
PermalinkA novel method of spatiotemporal dynamic geo-visualization of criminal data, applied to command and control centers for public safety / Mayra Salcedo-Gonzalez in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkRoad network structure and ride-sharing accessibility: A network science perspective / Mingshu Wang in Computers, Environment and Urban Systems, vol 80 (March 2020)
PermalinkPermalink