Descripteur
Termes descripteurs IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > hydrographie > hydrographie de surface > eau de surface
eau de surfaceSynonyme(s)eau superficielle |



Etendre la recherche sur niveau(x) vers le bas
Integrating runoff map of a spatially distributed model and thematic layers for identifying potential rainwater harvesting suitability sites using GIS techniques / Hamid Karimi in Geocarto international, vol 36 n° 3 ([01/03/2021])
![]()
[article]
Titre : Integrating runoff map of a spatially distributed model and thematic layers for identifying potential rainwater harvesting suitability sites using GIS techniques Type de document : Article/Communication Auteurs : Hamid Karimi, Auteur ; Hossein Zeinivand, Auteur Année de publication : 2021 Article en page(s) : pp 320 - 339 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] carte hydrographique
[Termes descripteurs IGN] combinaison linéaire ponderée
[Termes descripteurs IGN] couche thématique
[Termes descripteurs IGN] eau pluviale
[Termes descripteurs IGN] écoulement des eaux
[Termes descripteurs IGN] étang
[Termes descripteurs IGN] Iran
[Termes descripteurs IGN] modèle hydrographique
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] ruissellementRésumé : (auteur) Rainwater harvesting (RWH) is one of the major techniques that is investigated in the present study using Analytic Hierarchy Process (AHP) and Weighted Linear Combination (WLC) methods as two tools for decision-making, weighting and combining different thematic layers include land use, slope, drainage density and hydrological soil groups (HSG). The runoff map obtained by the distributed spatial-physical WetSpa model is considered as a useful layer that is integrated with other thematic layers in the geographic information system (GIS) environment for identifying RWH sites. Kakareza watershed (1132 km2) in Iran was selected as a study area to carry out the foregoing approach. The results showed that 256 km2 of the study area is good for RWH, 360 km2 is moderate and 516 km2 is poor. Thus, about 22.61% (256 km2) of Kakareza watershed is highly suitable for farm ponds. This article recommends the RWH suitable sites to a judicious decision for better water management in the area. Numéro de notice : A2021-141 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1608590 date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1080/10106049.2019.1608590 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97037
in Geocarto international > vol 36 n° 3 [01/03/2021] . - pp 320 - 339[article]Assessing historical maps for characterizing fluvial corridor changes at a regional network scale / Samuel Dunesme in Cartographica, vol 55 n° 4 (Winter 2020)
![]()
[article]
Titre : Assessing historical maps for characterizing fluvial corridor changes at a regional network scale Type de document : Article/Communication Auteurs : Samuel Dunesme , Auteur ; Hervé Piegay, Auteur ; Sébastien Mustière
, Auteur
Année de publication : 2020 Projets : EUR H20'Lyon / Article en page(s) : pp 251 - 265 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] base de données historiques
[Termes descripteurs IGN] base de données topographiques
[Termes descripteurs IGN] carte de base
[Termes descripteurs IGN] corridor biologique
[Termes descripteurs IGN] données hydrographiques
[Termes descripteurs IGN] géomorphologie
[Termes descripteurs IGN] rivière
[Termes descripteurs IGN] trame bleue
[Termes descripteurs IGN] vectorisation
[Termes descripteurs IGN] vingtième siècleRésumé : (Auteur) Fluvial corridor quality assessment requires that historical data be collected at a regional scale. In this article, our goal is to assess potential map resources to explore riverscape changes at a regional network scale and to define key issues in using an automated vectorization protocol to characterize such changes on such a large scale. We consider IGN’s Nouvelle Carte de France a potentially good resource for our objective of two-date (oldest + actual vector database) comparisons on 1:20,000–1:25,000 scale maps, notably when applied at a regional scale. The French IGN corpus is a good example of topographic maps that were produced in the twentieth century in Europe with fairly homogeneous data over a whole national territory. Moreover, the digitization and georeferencing processes applied by IGN are very accurate. The evolution of conventional features is not as significant for the hydrographic theme and should not be a problem for automatic vectorization. The potential temporal coverage is from 1922 to 1993, but the complexity of the sheet divisions, partial revisions, and the heterogeneity of coverage over time prevent multidate analysis. Numéro de notice : A2020-775 Affiliation des auteurs : LaSTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3138/cart-2019-0025 date de publication en ligne : 22/12/2020 En ligne : https://doi.org/10.3138/cart-2019-0025 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96689
in Cartographica > vol 55 n° 4 (Winter 2020) . - pp 251 - 265[article]River ice segmentation with deep learning / Abhineet Singh in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : River ice segmentation with deep learning Type de document : Article/Communication Auteurs : Abhineet Singh, Auteur ; Hayden Kalke, Auteur ; Mark Loewen, Auteur Année de publication : 2020 Article en page(s) : pp 7570 - 7579 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage non-dirigé
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Canada
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] glace
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] rivière
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (auteur) This article deals with the problem of computing surface concentrations for two types of river ice from digital images acquired during freeze-up. It presents the results of attempting to solve this problem using several state-of-the-art semantic segmentation methods based on deep convolutional neural networks (CNNs). This task presents two main challenges—very limited availability of labeled training data and presence of noisy labels due to the great difficulty of visually distinguishing between the two types of ice, even for human experts. The results are used to analyze the extent to which some of the best deep learning methods currently in existence can handle these challenges. The code and data used in the experiments are made publicly available to facilitate further work in this domain. Numéro de notice : A2020-674 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2981082 date de publication en ligne : 13/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2981082 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96165
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7570 - 7579[article]A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images / Heng Lyu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images Type de document : Article/Communication Auteurs : Heng Lyu, Auteur ; Zhiqian Yang, Auteur ; Lei Shi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6512 - 6523 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] image Sentinel-OLCI
[Termes descripteurs IGN] lac
[Termes descripteurs IGN] plancton
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] teneur en carboneRésumé : (auteur) Phytoplankton carbon, an important biogeochemical and ecological parameter, plays a critical role in the carbon cycle and in global warming reduction. Estimation of phytoplankton carbon in inland waters on a large scale using remote sensing is useful for understanding, evaluating, and monitoring the carbon dynamics, and, in particular, for determining the spatial–temporal variation of primary production in inland waters. In a correlation analysis of the phytoplankton carbon concentration and water components, the result revealed no significant correlation between the chlorophyll-a concentration and phytoplankton carbon concentration in inland waters. However, the absorption peak height of particles at 675 nm, which is defined as the absorption at 675 nm subtracted by that at 660 nm, was found to be closely correlated with the phytoplankton carbon concentration. Thus, the absorption peak height of particles at 675 nm could be used as an indicator of the phytoplankton carbon concentration. A semianalytical method based on the remote-sensing reflectance in Sentinel-3 Ocean and Land Color Instrument (OLCI) bands 8, 9, and 17 was developed to derive the absorption peak of particles at a wavelength of 675 nm. Finally, an algorithm for estimating the phytoplankton carbon concentration in inland waters using OLCI bands 8, 9, and 17 was constructed. From 2013 to 2018, eight field campaigns were conducted in inland lakes in different seasons, and the optical properties, optically active water components, and phytoplankton carbon concentrations were obtained. An assessment of its accuracy using an independent data set demonstrated that the algorithm performance is acceptable (mean absolute percentage error, 48.6%, and root mean square error, 0.36 mg/L). As a demonstration, the algorithm was successfully applied to map the phytoplankton carbon concentration in Taihu Lake and Chaohu Lake, China, using OLCI images acquired on December 5, 2017, and August 5, 2018 and December 8, 2... Numéro de notice : A2020-531 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977080 date de publication en ligne : 12/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977080 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95714
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6512 - 6523[article]Assessment of USGS DEMs for modelling pothole inundation in the prairie pothole region of Iowa / Priyadarshi Upadhyay in Geocarto international, vol 35 n° 9 ([01/07/2020])
![]()
[article]
Titre : Assessment of USGS DEMs for modelling pothole inundation in the prairie pothole region of Iowa Type de document : Article/Communication Auteurs : Priyadarshi Upadhyay, Auteur ; Amy L. Kaleita, Auteur ; M. L. Soupir, Auteur Année de publication : 2020 Article en page(s) : pp 1018 - 1032 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] Global Multi-resolution Terrain Elevation Data 2010
[Termes descripteurs IGN] inondation
[Termes descripteurs IGN] Iowa (Etats-Unis)
[Termes descripteurs IGN] mare
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] profondeur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) This study aims to compare inundation in two potholes using Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) with three Digital Elevation Models (DEMs): a 1 m DEM prepared from the LiDAR data which is readily available for the state of Iowa, USGS 1/9 arc-second DEM (∼3 m) which covers about 25% of the conterminous U.S. and USGS 1/3 arc-second DEM (∼10 m) which covers the entire USA. In this study, we found that the variations in water depth and presence/absence of ponding in the potholes of size greater than 1 ha can be predicted using USGS DEMs. The estimates of average water depths using USGS 3 m DEM was found to be 6% and 2% lower than the 1 m LiDAR DEM and the estimates of average water depths using USGS 10 m DEM was found to be 7% and 12% higher than the 1 m LiDAR DEM for the Walnut and Bunny potholes, respectively. Numéro de notice : A2020-429 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1573852 date de publication en ligne : 06/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1573852 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95497
in Geocarto international > vol 35 n° 9 [01/07/2020] . - pp 1018 - 1032[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020091 SL Revue Centre de documentation Revues en salle Disponible Can we characterize river corridor evolution at a continental scale from historical topographic maps? A first assessment from the comparison of four countries / J. Horacio Garcia in River Research and Applications, vol 36 n° 6 (July 2020)
PermalinkLong time-series remote sensing analysis of the periodic cycle evolution of the inlets and ebb-tidal delta of Xincun Lagoon, Hainan Island, China / Huaguo Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
PermalinkHydrogeology of the western Po plain (Piedmont, NW Italy) / Domenico Antonio De Luca in Journal of maps, vol 16 n° 2 ([01/06/2020])
PermalinkMethodology of the automatic generalization of buildings, road networks, forests and surface waters: a case study based on the Topographic Objects Database in Poland / Izabela Karsznia in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkA water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkAssessment of the accuracy of DTM river bed model using classical surveying measurement and LiDAR: a case study in Poland / Pawel Kotlarz in Survey review, vol 52 n° 372 (May 2020)
PermalinkA Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkGIS-based multi criteria decision making method to identify potential runoff storage zones within watershed / Vikas Kumar Rana in Annals of GIS, vol 26 n° 2 (April 2020)
PermalinkLe sol s'affaisse, l'eau monte [Delta du Gange-Brahmapoutre-Meghna] / Marielle Mayo in Géomètre, n° 2179 (avril 2020)
PermalinkClassifying physiographic regimes on terrain and hydrologic factors for adaptive generalization of stream networks / Lauwrence V. Stanislawski in International journal of cartography, Vol 6 n° 1 (March 2020)
Permalink