Descripteur
Termes IGN > sciences humaines et sociales > économie > macroéconomie > secteur primaire > agriculture > agriculture de précision
agriculture de précision |
Documents disponibles dans cette catégorie (39)



Etendre la recherche sur niveau(x) vers le bas
Deep-learning-based multispectral image reconstruction from single natural color RGB image - Enhancing UAV-based phenotyping / Jiangsan Zhao in Remote sensing, vol 14 n° 5 (March-1 2022)
![]()
[article]
Titre : Deep-learning-based multispectral image reconstruction from single natural color RGB image - Enhancing UAV-based phenotyping Type de document : Article/Communication Auteurs : Jiangsan Zhao, Auteur ; Ajay Kumar, Auteur ; Balaji Naik Banoth, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1272; Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agriculture de précision
[Termes IGN] apprentissage profond
[Termes IGN] erreur absolue
[Termes IGN] image multibande
[Termes IGN] image RVB
[Termes IGN] Inde
[Termes IGN] phénologie
[Termes IGN] reconstruction d'imageRésumé : (auteur) Multispectral images (MSIs) are valuable for precision agriculture due to the extra spectral information acquired compared to natural color RGB (ncRGB) images. In this paper, we thus aim to generate high spatial MSIs through a robust, deep-learning-based reconstruction method using ncRGB images. Using the data from the agronomic research trial for maize and breeding research trial for rice, we first reproduced ncRGB images from MSIs through a rendering model, Model-True to natural color image (Model-TN), which was built using a benchmark hyperspectral image dataset. Subsequently, an MSI reconstruction model, Model-Natural color to Multispectral image (Model-NM), was trained based on prepared ncRGB (ncRGB-Con) images and MSI pairs, ensuring the model can use widely available ncRGB images as input. The integrated loss function of mean relative absolute error (MRAEloss) and spectral information divergence (SIDloss) were most effective during the building of both models, while models using the MRAEloss function were more robust towards variability between growing seasons and species. The reliability of the reconstructed MSIs was demonstrated by high coefficients of determination compared to ground truth values, using the Normalized Difference Vegetation Index (NDVI) as an example. The advantages of using “reconstructed” NDVI over Triangular Greenness Index (TGI), as calculated directly from RGB images, were illustrated by their higher capabilities in differentiating three levels of irrigation treatments on maize plants. This study emphasizes that the performance of MSI reconstruction models could benefit from an optimized loss function and the intermediate step of ncRGB image preparation. The ability of the developed models to reconstruct high-quality MSIs from low-cost ncRGB images will, in particular, promote the application for plant phenotyping in precision agriculture. Numéro de notice : A2022-210 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14051272 Date de publication en ligne : 05/03/2022 En ligne : https://doi.org/10.3390/rs14051272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100033
in Remote sensing > vol 14 n° 5 (March-1 2022) . - n° 1272;[article]Attributs de texture extraits d'images multispectrales acquises en conditions d'éclairage non contrôlées : application à l'agriculture de précision / Anis Amziane (2022)
![]()
Titre : Attributs de texture extraits d'images multispectrales acquises en conditions d'éclairage non contrôlées : application à l'agriculture de précision Type de document : Thèse/HDR Auteurs : Anis Amziane, Auteur ; Ludovic Macaire, Directeur de thèse Editeur : Lille : Université de Lille Année de publication : 2022 Importance : 214 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l'Université de Lille, spécialité Automatique, Génie Informatique, Traitement du Signal et des ImagesLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agriculture de précision
[Termes IGN] bande spectrale
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] éclairage
[Termes IGN] exitance spectrale
[Termes IGN] extraction de la végétation
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] reconnaissance d'objets
[Termes IGN] réflectance végétale
[Termes IGN] signature spectraleIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The main objective of this work is to develop an automatic recognition system of crop and weed plants in field conditions. In Chapter 2 we describe the formation of multispectral radiance images under the Lambertian surface assumption and the different devices that can be used to acquire such images. We then provide a detailed description of the multispectral camera used in this study. Because radiance multispectral images are acquired under varying illumination, we propose an original multispectral image formation model that takes the variation of illumination conditions into account. In chapter 3, we estimate the reflectance as an illumination-invariant spectral signature. First, we present state-of-the-art methods that can be used to estimate the reflectance from multispectral images. We then introduce the reference state-of-the-art method for reflectance estimation and de- scribe our proposed method for reflectance estimation under varying illumination. Chapter 4 focuses on estimated reflectance assessment. The quality of reflectance estimated by our method is evaluated against state-of-the-art methods, and its contribution to supervised crop/weed recognition is demonstrated. Chapter 5 addresses the dimension reduction issue. The acquired multispectral images are composed of a high number of spectral channels, whose analysis is memory and time consuming. Moreover, spectral bands associated to these channels may be redundant or contain highly correlated spectral information. Therefore, we select the best spectral bands for crop/weed classification and use them to specify a camera suited for crop/weed recognition.Chapter 6 deals with the problem of spatio-spectral feature extraction from multispectral images. We propose an approach that extracts both spatial and spectral information at reduced computation costs based on a CNN. Its contribution to crop/weed recognition is demonstrated. Note de contenu : 1- Introduction
2- Multispectral imaging
3- Reflectance estimation
4- Reflectance estimation assessment
5- dimension reduction
6- Raw textures features for crop/weed recognition
ConclusionNuméro de notice : 24102 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Organisme de stage : Laboratoire Cristal (Lille) DOI : sans En ligne : https://www.theses.fr/2022ULILB020 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102577 Integration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
![]()
[article]
Titre : Integration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model Type de document : Article/Communication Auteurs : Nadeem Fareed, Auteur ; Khushbakht Rehman, Auteur Année de publication : 2020 Article en page(s) : 26 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] agriculture de précision
[Termes IGN] données GNSS
[Termes IGN] données lidar
[Termes IGN] extraction automatique
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] modèle dynamique
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] système d'information géographique
[Termes IGN] télédétectionRésumé : (auteur) Automated feature extraction from drone-based image point clouds (DIPC) is of paramount importance in precision agriculture (PA). PA is blessed with mechanized row seedlings to attain maximum yield and best management practices. Therefore, automated plantation rows extraction is essential in crop harvesting, pest management, and plant grow-rate predictions. Most of the existing research is consists on red, green, and blue (RGB) image-based solutions to extract plantation rows with the minimal background noise of test study sites. DIPC-based DSM row extraction solutions have not been tested frequently. In this research work, an automated method is designed to extract plantation row from DIPC-based DSM. The chosen plantation compartments have three different levels of background noise in UAVs images, therefore, methodology was tested under different background noises. The extraction results were quantified in terms of completeness, correctness, quality, and F1-score values. The case study revealed the potential of DIPC-based solution to extraction the plantation rows with an F1-score value of 0.94 for a plantation compartment with minimal background noises, 0.91 value for a highly noised compartment, and 0.85 for a compartment where DIPC was compromised. The evaluation suggests that DSM-based solutions are robust as compared to RGB image-based solutions to extract plantation-rows. Additionally, DSM-based solutions can be further extended to assess the plantation rows surface deformation caused by humans and machines and state-of-the-art is redefined. Numéro de notice : A2020-260 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9030151 Date de publication en ligne : 06/03/2020 En ligne : https://doi.org/10.3390/ijgi9030151 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95020
in ISPRS International journal of geo-information > vol 9 n° 3 (March 2020) . - 26 p.[article]Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi / Brad G. Peter in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)
![]()
[article]
Titre : Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi Type de document : Article/Communication Auteurs : Brad G. Peter, Auteur ; Joseph P. Messina, Auteur ; Jon W. Carroll, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 107 - 119 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agriculture de précision
[Termes IGN] analyse multirésolution
[Termes IGN] exploitation agricole
[Termes IGN] image Pléiades
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] MalawiRésumé : (Auteur) A collection of spectral indices, derived from a range of remote sensing imagery spatial resolutions, are compared to on-farm measurements of maize chlorophyll content and yield at two trial farms in central Malawi to evaluate what spatial resolutions are most effective for relating multispectral images with crop status. Single and multiple linear regressions were tested for spatial resolutions ranging from 7 cm to 20 m using a small unmanned aerial system (sUAS) and satellite imagery from Planet, SPOT 6, Pléiades, and Sentinel-2. Results suggest that imagery with spatial resolutions nearer the maize plant scale (i.e., 14–27 cm) are most effective for relating spectral signals with crop health on smallholder farms in Malawi. Consistent with other studies, green-band indices were more strongly correlated with maize chlorophyll content and yield than conventional red-band indices, and multivariable models often outperformed single variable models. Numéro de notice : A2020-127 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.2.107 Date de publication en ligne : 01/02/2020 En ligne : https://doi.org/10.14358/PERS.86.2.107 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94796
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 2 (February 2020) . - pp 107 - 119[article]Automatic canola mapping using time series of Sentinel 2 images / Davoud Ashourloo in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
![]()
[article]
Titre : Automatic canola mapping using time series of Sentinel 2 images Type de document : Article/Communication Auteurs : Davoud Ashourloo, Auteur ; Hamid Salehi Shahrabi, Auteur ; Mohsen Azadbakht, Auteur ; Hossein Aghighi, Auteur ; Hamed Nematollahi, Auteur ; Abbas Alimohammadi, Auteur ; Ali Akbar Matkan, Auteur Année de publication : 2019 Article en page(s) : pp 63 - 76 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agriculture de précision
[Termes IGN] Brassica napus subsp. napus
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] image Sentinel-MSI
[Termes IGN] Iran
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Oklahoma (Etats-Unis)
[Termes IGN] rendement agricole
[Termes IGN] série temporelleRésumé : (Auteur) Different techniques utilized for mapping various crops are mainly based on using training dataset. But, due to difficulties of access to a well-represented training data, development of automatic methods for detection of crops is an important need which has not been considered as it deserves. Therefore, main objective of present study was to propose a new automatic method for canola (Brassica napus L.) mapping based on Sentinel 2 satellite time series data. Time series data of three study sites in Iran (Moghan, Gorgan, Qazvin) and one site in USA: (Oklahoma), were used. Then, spectral reflectance values of canola in various spectral bands were compared with those of the other crops during the growing season. NDVI, Red and Green spectral bands were successfully applied for automatic identification of canola flowering date using the threshold values. Examination of the fisher function indicated that multiplication of the near-infrared (NIR) band by the sum of red and green bands during the flowering date is an efficient index to differentiate canola from the other crops. The Kappa and overall accuracy (OA) for the four study sites were more than 0.75 and 88%, respectively. Results of this research demonstrated the potential of the proposed approach for canola mapping using time series of remotely sensed data. Numéro de notice : A2019-317 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.08.007 Date de publication en ligne : 09/08/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93355
in ISPRS Journal of photogrammetry and remote sensing > vol 156 (October 2019) . - pp 63 - 76[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data / Abel Chemura in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
PermalinkPermalinkSentinel-2 data analysis and comparison with UAV multispectral images for precision viticulture / Frederica Nonni in GI Forum, vol 2018 n° 1 ([01/01/2018])
PermalinkTélédétection pour l'observation des surfaces continentales, Volume 3. Observation des surfaces continentales par télédétection 1 / Nicolas Baghdadi (2017)
PermalinkTélédétection pour l'agriculture de précision par caméra hyperspectrale miniature / D. Constantin in Géomatique suisse, vol 113 n° 9 (septembre 2015)
PermalinkDu champ à l'argent, tout passe par l'écran / Françoise de Blomac in DécryptaGéo le mag, n° 165 (mars 2015)
PermalinkLes journées de la recherche 2015 à l'IGN / Anonyme in Géomatique expert, n° 103 (mars - avril 2015)
PermalinkPermalinkAssessment of crop foliar nitrogen using a novel dual-wavelength laser system and implications for conducting laser-based plant physiology / Jan U.H. Eitel in ISPRS Journal of photogrammetry and remote sensing, vol 97 (November 2014)
PermalinkEstimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects / Kiyun Yu in ISPRS Journal of photogrammetry and remote sensing, vol 97 (November 2014)
Permalink