Descripteur
Documents disponibles dans cette catégorie (522)


Etendre la recherche sur niveau(x) vers le bas
Parcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data / Yanyan Wang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
![]()
[article]
Titre : Parcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data Type de document : Article/Communication Auteurs : Yanyan Wang, Auteur ; Shenghui Fang, Auteur ; Lingli Zhao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102720 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] carte de la végétation
[Termes IGN] Chine
[Termes IGN] croissance végétale
[Termes IGN] données spatiotemporelles
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] maïs (céréale)
[Termes IGN] mesure de similitude
[Termes IGN] phénologie
[Termes IGN] saison
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) This study aims to map the planting area of summer maize and estimate the spatiotemporal phenology information with parcel-based classification method through integration of Sentinel-1/2 data in Jiaozuo located in North China Plain. For the maize mapping, the combination of Sentinel-1/2 data with the parcel-based method has the highest classification accuracy, suggesting that the integration of Sentinel-1/2 data with parcel-based method has great potential for regional maize mapping. For the estimation of maize phenology, the dynamic threshold method is used to extract the tasseling and milk ripening date through the time series σ0VH. In order to reduce the influence of precipitation or irrigation on SAR data, a Local Minimum Value Composite (LMVC) method is proposed to filter the original time series SAR data. The systematic phenology estimation method mainly includes LMVC, S-G filtering, Fourier curve fitting and dynamic threshold points extracting. Compared with the actual phenology date by field investigation, the errors of estimated tasseling and milk ripening date are 4.3 days and 5.5 days respectively, indicating that the time series σ0VH derived from the SAR data has great potential in spatiotemporal phenology estimation of field maize. Finally, the scattering mechanism of the maize field to C-band microwave in different growth periods was analyzed. It was also found that the phenology of maize was delayed in the coal mining subsidence areas and the areas with insufficient field management. Numéro de notice : A2022-232 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102720 Date de publication en ligne : 24/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102720 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100121
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102720[article]Projections of climate change impacts on flowering-veraison water deficits for Riesling and Müller-Thurgau in Germany / Chenyao Yang in Remote sensing, vol 14 n° 6 (March-2 2022)
![]()
[article]
Titre : Projections of climate change impacts on flowering-veraison water deficits for Riesling and Müller-Thurgau in Germany Type de document : Article/Communication Auteurs : Chenyao Yang, Auteur ; Christoph Menz, Auteur ; Maxim Simões De Abreu Jaffe, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1519 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] changement climatique
[Termes IGN] données météorologiques
[Termes IGN] phénologie
[Termes IGN] sécheresse
[Termes IGN] stress hydrique
[Termes IGN] viticulture
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) With global warming, grapevine is expected to be increasingly exposed to water deficits occurring at various development stages. In this study, we aimed to investigate the potential impacts of projected climate change on water deficits from the flowering to veraison period for two main white wine cultivars (Riesling and Müller-Thurgau) in Germany. A process-based soil-crop model adapted for grapevine was utilized to simulate the flowering-veraison crop water stress indicator (CWSI) of these two varieties between 1976–2005 (baseline) and 2041–2070 (future period) based on a suite of bias-adjusted regional climate model (RCM) simulations under RCP4.5 and RCP8.5. Our evaluation indicates that the model can capture the early-ripening (Müller-Thurgau) and late-ripening (Riesling) traits, with a mean bias of prediction of ≤2 days and a well-reproduced inter-annual variability for more than 60 years. Under climate projections, the flowering stage is advanced by 10–20 days (higher in RCP8.5) between the two varieties, whereas a slightly stronger advancement is found for Müller-Thurgau than for Riesling for the veraison stage. As a result, the flowering-veraison phenophase is mostly shortened for Müller-Thurgau, whereas it is extended by up to two weeks for Riesling in cool and high-elevation areas. The length of phenophase plays an important role in projected changes of flowering-veraison mean temperature and precipitation. The late-ripening trait of Riesling makes it more exposed to increased summer temperature (mainly in August), resulting in a higher mean temperature increase for Riesling (1.5–2.5 °C) than for Müller-Thurgau (1–2 °C). As a result, an overall increased CWSI by up to 15% (ensemble median) is obtained for both varieties, whereas the upper (95th) percentile of simulations shows a strong signal of increased water deficit by up to 30%, mostly in the current winegrowing regions. Intensified water deficit stress can represent a major threat for high-quality white wine production, as only mild water deficits are acceptable. Nevertheless, considerable variabilities of CWSI were discovered among RCMs, highlighting the importance of efforts towards reducing uncertainties in climate change impact assessment. Numéro de notice : A2022-252 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/rs14061519 Date de publication en ligne : 21/03/2022 En ligne : https://doi.org/10.3390/rs14061519 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100208
in Remote sensing > vol 14 n° 6 (March-2 2022) . - n° 1519[article]Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion / Nitzan Malachy in Remote sensing, vol 14 n° 4 (February-2 2022)
![]()
[article]
Titre : Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion Type de document : Article/Communication Auteurs : Nitzan Malachy, Auteur ; Imri Zadak, Auteur ; Offer Rozenstein, Auteur Année de publication : 2022 Article en page(s) : n° 810 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse spectrale
[Termes IGN] covariance
[Termes IGN] cultures
[Termes IGN] données lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image captée par drone
[Termes IGN] modèle de croissance végétale
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] zone d'intérêtRésumé : (auteur) Although it is common to consider crop height in agricultural management, variation in plant height within the field is seldom addressed because it is challenging to assess from discrete field measurements. However, creating spatial crop height models (CHMs) using structure from motion (SfM) applied to unmanned aerial vehicle (UAV) imagery can easily be done. Therefore, looking into intra- and inter-season height variability has the potential to provide regular information for precision management. This study aimed to test different approaches to deriving crop height from CHM and subsequently estimate the crop coefficient (Kc). CHMs were created for three crops (tomato, potato, and cotton) during five growing seasons, in addition to manual height measurements. The Kc time-series were derived from eddy-covariance measurements in commercial fields and estimated from multispectral UAV imagery in small plots, based on known relationships between Kc and spectral vegetation indices. A comparison of four methods (Mean, Sample, Median, and Peak) was performed to derive single height values from CHMs. Linear regression was performed between crop height estimations from CHMs against manual height measurements and Kc. Height was best predicted using the Mean and the Sample methods for all three crops (R2 = 0.94, 0.84, 0.74 and RMSE = 0.056, 0.071, 0.051 for cotton, potato, and tomato, respectively), as was the prediction of Kc (R2 = 0.98, 0.84, 0.8 and RMSE = 0.026, 0.049, 0.023 for cotton, potato, and tomato, respectively). The Median and Peak methods had far less success in predicting both, and the Peak method was shown to be sensitive to the size of the area analyzed. This study shows that CHMs can help growers identify spatial heterogeneity in crop height and estimate the crop coefficient for precision irrigation applications. Numéro de notice : A2022-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14040810 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.3390/rs14040810 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99774
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 810[article]Latent heat flux variability and response to drought stress of black poplar: A multi-platform multi-sensor remote and proximal sensing approach to relieve the data scarcity bottleneck / Flavia Tauro in Remote sensing of environment, vol 268 (January 2022)
![]()
[article]
Titre : Latent heat flux variability and response to drought stress of black poplar: A multi-platform multi-sensor remote and proximal sensing approach to relieve the data scarcity bottleneck Type de document : Article/Communication Auteurs : Flavia Tauro, Auteur ; Antonino Maltese, Auteur ; Roberto Giannini, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112771 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bioénergie
[Termes IGN] évapotranspiration
[Termes IGN] gestion de l'eau
[Termes IGN] image captée par drone
[Termes IGN] image satellite
[Termes IGN] irrigation
[Termes IGN] Piémont (Italie)
[Termes IGN] Populus nigra
[Termes IGN] sécheresse
[Termes IGN] stress hydriqueRésumé : (auteur) High-throughput mapping of latent heat flux (λET) is critical to efforts to optimize water resources management and to accelerate forest tree breeding for improved drought tolerance. Ideally, investigation of the energy response at the tree level may promote tailored irrigation strategies and, thus, maximize crop biomass productivity. However, data availability is limited and planning experimental campaigns in the field can be highly operationally complex. To this end, a multi-platform multi-sensor observational approach is herein developed to dissect the λET signature of a black poplar (Populus nigra) breeding population (“POP6”) at the canopy level. POP6 comprised more than 4600 trees representing 503 replicated genotypes, whose parents were derived from contrasting environmental conditions. Trees were trialed in two adjacent plots where different irrigation treatments (moderate drought [mDr] and well-watered [WW]) were applied. Data collected from satellite and unmanned aerial vehicles (UAVs) remote sensing as well as from ground-based proximal sensors were integrated at consistent spatial aggregation and combined to compute the surface energy balance of the trees through a modified Priestley-Taylor method. Here, we demonstrated that λET response was significantly different between WW and mDr trees, whereby genotypes in mDr conditions exhibited larger standard deviations. Importantly, genotypes classified as drought tolerant based on the stress susceptibility index (SSI) presented λET values significantly higher than the rest of the population. This study confirmed that water limitation in mDr settings led to reduced soil moisture in the tree root zone and, thus, to lower λET. These results pave the way to breeding poplar and other bioenergy crops with this underexploited trait for higher λET. Most notably, the illustrated work demonstrates a multi-platform multi-sensor data fusion approach to tackle the global challenge of monitoring landscape-scale ecosystem processes at fine resolution. Numéro de notice : A2022-087 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112771 Date de publication en ligne : 05/11/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112771 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99496
in Remote sensing of environment > vol 268 (January 2022) . - n° 112771[article]Monitoring and analysis of crop irrigation dynamics in Central Italy through the use of MODIS NDVI data / Marta Chiesi in European journal of remote sensing, vol 55 n° 1 (January 2022)
![]()
[article]
Titre : Monitoring and analysis of crop irrigation dynamics in Central Italy through the use of MODIS NDVI data Type de document : Article/Communication Auteurs : Marta Chiesi, Auteur ; Luca Angeli, Auteur ; Piero Battista, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 23 - 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] bilan hydrique
[Termes IGN] carte agricole
[Termes IGN] cultures irriguées
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] irrigation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Toscane (Italie)Résumé : (auteur) A recent study has proposed and tested a semi-empirical method to estimate crop irrigation based on a water balance logic and Sentinel-2 Multi Spectral Instrument (MSI) NDVI imagery. The current paper aims at extending the same approach to the analysis of the main irrigation patterns occurred in Tuscany (Central Italy) during the 2000–2019 period. This operation was made possible by feeding the irrigation water (IW) estimation method with 250-m spatial resolution Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI images. The results of this operation were first assessed versus various reference datasets available for the region; next, the annual maps of IW estimated for the 20 study years were analyzed at province scale in conjunction with relevant agricultural statistics. The use of MODIS in place of MSI images reduces the IW estimation accuracy irregularly at local scale, depending on the size and spatial arrangement of irrigated and non-irrigated fields; the reduction in accuracy is, however, marginal over relatively large areas. Irrigated crops are decreasing throughout most Tuscany provinces, while they are increasing in the most southern and driest province. The possible reasons and implications of these findings are finally discussed in relation to the main environmental issues affecting the region. Numéro de notice : A2022-099 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1080/22797254.2021.2013735 Date de publication en ligne : 05/01/2022 En ligne : https://doi.org/10.1080/22797254.2021.2013735 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99549
in European journal of remote sensing > vol 55 n° 1 (January 2022) . - pp 23 - 36[article]Particle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images / Mohammad Hossein Gamshadzaei in Geocarto international, vol 36 n° 20 ([01/12/2021])
PermalinkCrop rotation modeling for deep learning-based parcel classification from satellite time series / Félix Quinton in Remote sensing, vol 13 n° 22 (November-2 2021)
PermalinkPotential flood hazard zone mapping based on geomorphologic considerations and fuzzy analytical hierarchy model in a data scarce West African basin / Olabanji Aladejana in Geocarto international, vol 36 n° 19 ([01/11/2021])
PermalinkField scale wheat LAI retrieval from multispectral Sentinel 2A-MSI and LandSat 8-OLI imagery: effect of atmospheric correction, image resolutions and inversion techniques / Rajkumar Dhakar in Geocarto international, vol 36 n° 18 ([01/10/2021])
PermalinkEstimating regional soil moisture with synergistic use of AMSR2 and MODIS images / Majid Rahimzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
PermalinkPermalinkSentinel-1 sensitivity to soil moisture at high incidence angle and the impact on retrieval over seasonal crops / Davide Palmisano in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
PermalinkAn integrated methodology for surface soil moisture estimating using remote sensing data approach / Rida Khellouk in Geocarto international, vol 36 n° 13 ([15/07/2021])
PermalinkEvaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data / Asadollah Mirasi in Geocarto international, vol 36 n° 12 ([01/07/2021])
PermalinkA combined drought monitoring index based on multi-sensor remote sensing data and machine learning / Hongzhu Han in Geocarto international, vol 36 n° 10 ([01/06/2021])
Permalink