Descripteur
Termes IGN > sciences humaines et sociales > économie > macroéconomie > secteur primaire > agriculture > rendement agricole
rendement agricole |
Documents disponibles dans cette catégorie (40)



Etendre la recherche sur niveau(x) vers le bas
Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images / Omer Gokberk Narin in Geocarto international, vol 37 n° 5 ([01/05/2022])
![]()
[article]
Titre : Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images Type de document : Article/Communication Auteurs : Omer Gokberk Narin, Auteur ; Saygin Abdikan, Auteur Année de publication : 2022 Article en page(s) : pp 1378 - 1392 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] image multitemporelle
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] phénologie
[Termes IGN] rendement agricole
[Termes IGN] tournesol
[Termes IGN] TurquieRésumé : (Auteur) With the increase of the world’s population, while urbanization is increasing, agricultural lands are decreasing. Therefore, monitoring of up-to-date agricultural lands is important for agricultural product estimation. The study investigates suitability of Sentinel-2 data for the phenological stage analysis and yield estimation of sunflower plant. To this aim, fieldworks was conducted and sunflower parcels were identified in Zile district of Tokat province, Turkey which has dense sunflower production. In this study, ten Vegetation Indices (VIs) were performed by using multi-temporal Sentinel-2 data obtained during the growth stages of sunflower plant and yield estimation was obtained. As a result, the indices obtained on 30 June, at the stage of inflorescence emergence, provided coefficient of determination (R2) higher than 0.67 and The Root Mean Square Error (RMSE) lower than 13 kg/da. Among the VIs, the best forecast obtained by NDVI (R2 = 0.74 and RMSE = 10.80 kg/da) approximately three months before the harvest of sunflower. Numéro de notice : A2022-276 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1765886 Date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/10106049.2020.1765886 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100784
in Geocarto international > vol 37 n° 5 [01/05/2022] . - pp 1378 - 1392[article]Evaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data / Asadollah Mirasi in Geocarto international, vol 36 n° 12 ([01/07/2021])
![]()
[article]
Titre : Evaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data Type de document : Article/Communication Auteurs : Asadollah Mirasi, Auteur ; Asghar Mahmoudi, Auteur ; Hossein Navid, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1309-1304 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] blé (céréale)
[Termes IGN] données de terrain
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] rendement agricole
[Termes IGN] Soil Adjusted Vegetation IndexRésumé : (Auteur) Normalized difference vegetation index (NDVI)-based models have been developed to derive wheat grain yields with multispectral images. In this regard, field measurements and Landsat 8 Operational Land Imager (OLI) data were used for two growing seasons to determine the relationships between NDVI and yields. The number of six statistic parameters were calculated from NDVI values to find the best agreement with actual yield data. A comparison of the results showed that sum-NDVI better matched field measurements. To compare the results of NDVI with other vegetation indices, we applied four other vegetation indices. Results indicated that estimation of wheat yields using sum-NDVI values was more accurate than estimation by sum of the four applied vegetation indices values. Also, the investigation of multi-temporal images showed that the critical time to estimate wheat yield using sum-NDVI values was the time that wheat grains were in the milky and maturity stages. Numéro de notice : A2021-377 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1641561 Date de publication en ligne : 16/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1641561 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97872
in Geocarto international > vol 36 n° 12 [01/07/2021] . - pp 1309-1304[article]Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities / Jingjing Zhou in Remote sensing, vol 13 n° 11 (June-1 2021)
![]()
[article]
Titre : Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities Type de document : Article/Communication Auteurs : Jingjing Zhou, Auteur ; Ya-Hao Zhang, Auteur ; Ze-Min Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] Citrus (genre)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] feuille (végétation)
[Termes IGN] image hyperspectrale
[Termes IGN] photosynthèse
[Termes IGN] réflectance végétale
[Termes IGN] rendement agricole
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétationRésumé : (auteur) Advanced techniques capable of early, rapid, and nondestructive detection of the impacts of drought on fruit tree and the measurement of the underlying photosynthetic traits on a large scale are necessary to meet the challenges of precision farming and full prediction of yield increases. We tested the application of hyperspectral reflectance as a high-throughput phenotyping approach for early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus trees by conducting a greenhouse experiment. To this end, photosynthetic CO2 assimilation rate (Pn), stomatal conductance (Cond) and transpiration rate (Trmmol) were measured with gas-exchange approaches alongside measurements of leaf hyperspectral reflectance from citrus grown across a gradient of soil drought levels six times, during 20 days of stress induction and 13 days of rewatering. Water stress caused Pn, Cond, and Trmmol rapid and continuous decline throughout the entire drought period. The upper layer was more sensitive to drought than middle and lower layers. Water stress could also bring continuous and dynamic changes of the mean spectral reflectance and absorptance over time. After trees were rewatered, these differences were not obvious. The original reflectance spectra of the four water stresses were surprisingly of low diversity and could not track drought responses, whereas specific hyperspectral spectral vegetation indices (SVIs) and absorption features or wavelength position variables presented great potential. The following machine-learning algorithms: random forest (RF), support vector machine (SVM), gradient boost (GDboost), and adaptive boosting (Adaboost) were used to develop a measure of photosynthesis from leaf reflectance spectra. The performance of four machine-learning algorithms were assessed, and RF algorithm yielded the highest predictive power for predicting photosynthetic parameters (R2 was 0.92, 0.89, and 0.88 for Pn, Cond, and Trmmol, respectively). Our results indicated that leaf hyperspectral reflectance is a reliable and stable method for monitoring water stress and yield increase, with great potential to be applied in large-scale orchards. Numéro de notice : A2021-440 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112160 Date de publication en ligne : 31/05/2021 En ligne : https://doi.org/10.3390/rs13112160 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97826
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2160[article]Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data / Vijay Pratap Yadav in Geocarto international, vol 36 n° 7 ([15/04/2021])
![]()
[article]
Titre : Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data Type de document : Article/Communication Auteurs : Vijay Pratap Yadav, Auteur ; Rajendra Prasad, Auteur ; Ruchi Bala, Auteur Année de publication : 2021 Article en page(s) : pp 791 - 802 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] blé (céréale)
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] Leaf Area Index
[Termes IGN] polarisation
[Termes IGN] rendement agricole
[Termes IGN] série temporelleRésumé : (Auteur) The time-series synthetic aperture radar (SAR) and optical satellite data were used for the leaf area index (LAI) estimation of wheat crop using modified water cloud model (MWCM) in Varanasi district, India. In this study, MWCM was developed by including scale invariant vegetation fraction (fveg) in the old WCM for the estimation of LAI. The non-linear least square optimization technique was applied to determine the optimum model parameters for the retrieval of LAI which was further validated with the observed LAI. The estimated values of LAI by MWCM at VV polarization shows good correspondence (R2 = 0.901 and RMSE = 0.456 m2/m2) with the observed LAI values than at VH polarization (R2 = 0.742 and RMSE = 0.521 m2/m2).The MWCM shows great potential for the LAI estimation of wheat crop by incorporating optical data (i.e. Sentinel-2) in terms of fveg with SAR data (i.e. Sentinel-1A). Numéro de notice : A2021-294 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624984 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624984 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97352
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 791 - 802[article]A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
![]()
[article]
Titre : A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery Type de document : Article/Communication Auteurs : Lucas Prado Osco, Auteur ; Mauro Dos Santos de Arruda, Auteur ; Diogo Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] carte agricole
[Termes IGN] Citrus sinensis
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] comptage
[Termes IGN] cultures
[Termes IGN] détection d'objet
[Termes IGN] extraction de la végétation
[Termes IGN] gestion durable
[Termes IGN] image captée par drone
[Termes IGN] maïs (céréale)
[Termes IGN] rendement agricoleRésumé : (auteur) Accurately mapping croplands is an important prerequisite for precision farming since it assists in field management, yield-prediction, and environmental management. Crops are sensitive to planting patterns and some have a limited capacity to compensate for gaps within a row. Optical imaging with sensors mounted on Unmanned Aerial Vehicles (UAV) is a cost-effective option for capturing images covering croplands nowadays. However, visual inspection of such images can be a challenging and biased task, specifically for detecting plants and rows on a one-step basis. Thus, developing an architecture capable of simultaneously extracting plant individually and plantation-rows from UAV-images is yet an important demand to support the management of agricultural systems. In this paper, we propose a novel deep learning method based on a Convolutional Neural Network (CNN) that simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations. The experimental setup was evaluated in (a) a cornfield (Zea mays L.) with different growth stages (i.e. recently planted and mature plants) and in a (b) Citrus orchard (Citrus Sinensis Pera). Both datasets characterize different plant density scenarios, in different locations, with different types of crops, and from different sensors and dates. This scheme was used to prove the robustness of the proposed approach, allowing a broader discussion of the method. A two-branch architecture was implemented in our CNN method, where the information obtained within the plantation-row is updated into the plant detection branch and retro-feed to the row branch; which are then refined by a Multi-Stage Refinement method. In the corn plantation datasets (with both growth phases – young and mature), our approach returned a mean absolute error (MAE) of 6.224 plants per image patch, a mean relative error (MRE) of 0.1038, precision and recall values of 0.856, and 0.905, respectively, and an F-measure equal to 0.876. These results were superior to the results from other deep networks (HRNet, Faster R-CNN, and RetinaNet) evaluated with the same task and dataset. For the plantation-row detection, our approach returned precision, recall, and F-measure scores of 0.913, 0.941, and 0.925, respectively. To test the robustness of our model with a different type of agriculture, we performed the same task in the citrus orchard dataset. It returned an MAE equal to 1.409 citrus-trees per patch, MRE of 0.0615, precision of 0.922, recall of 0.911, and F-measure of 0.965. For the citrus plantation-row detection, our approach resulted in precision, recall, and F-measure scores equal to 0.965, 0.970, and 0.964, respectively. The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops. The method proposed here may be applied to future decision-making models and could contribute to the sustainable management of agricultural systems. Numéro de notice : A2021-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.024 Date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97171
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 1 - 17[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Amélioration des systèmes de suivi des cultures à l’aide de la télédétection multi-source et des techniques d’apprentissage profond / Yawogan Gbodjo (2021)
PermalinkCounting of grapevine berries in images via semantic segmentation using convolutional neural networks / Laura Zabawa in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
PermalinkDiscriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data / Sugandh Chauhan in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
PermalinkAbove-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging / Bo Li in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkEstimating wheat yields in Australia using climate records, satellite image time series and machine learning methods / Elisa Kamir in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkThree-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering / Shangpeng Sun in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkSpatio-Temporal Prediction of the Epidemic Spread of Dangerous Pathogens Using Machine Learning Methods / Wolfgang B. Hamer in ISPRS International journal of geo-information, Vol 9 n° 1 (January 2020)
PermalinkAutomatic canola mapping using time series of Sentinel 2 images / Davoud Ashourloo in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
PermalinkDétection de changement par imagerie radar sur les zones naturelles et agricoles en milieu tropical / Jérôme Lebreton (2018)
PermalinkPermalink