Descripteur



Etendre la recherche sur niveau(x) vers le bas
Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia Type de document : Article/Communication Auteurs : Meron Awoke Eshetae, Auteur ; Binyam Tesfaw Hailu, Auteur ; Sebsebe Demissew, Auteur Année de publication : 2021 Article en page(s) : pp 60 - 75 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] données environnementales
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] Ethiopie
[Termes descripteurs IGN] Musa (genre)
[Termes descripteurs IGN] surface cultivéeRésumé : (Auteur) Enset (Ensete ventricosum) feeds around 20 million people in Ethiopia and is arguably the most important crop for food security and rural livelihoods in the country. Therefore, it is significant to know its spatial characterization and distribution in the country. We use spatial overlay analysis and the maximum entropy (MaxEnt) model for characterizing and modelling, respectively. Inputs for the model include 26 environmental variables—19 bioclimatic and seven biophysical—in addition to the geospatial location of enset field data. The model result was validated using Receiver Operating Characteristic curve method and the area under the curve (AUC) with 0.842 for cultivated enset and 0.760 (wild enset). The highest prediction (>0.5) of both varieties occurred in the southwestern, south-central and north-eastern parts of Ethiopia—17,293.67 km2 (cultivated) and 40,402 km2 (wild) area. The presence of both enset is probabilistically higher at the tropic-cool/sub-humid Agroecological Zones. Numéro de notice : A2021-051 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1588392 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1588392 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96773
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 60 - 75[article]The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution Type de document : Article/Communication Auteurs : Dimitri I. Rukhovitch, Auteur ; Polina V. Koroleva, Auteur ; Danila D. Rukhovitch, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 155 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] dégradation des sols
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Russie
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Soil degradation processes are widespread on agricultural land. Ground-based methods for detecting degradation require a lot of labor and time. Remote methods based on the analysis of vegetation indices can significantly reduce the volume of ground surveys. Currently, machine learning methods are increasingly being used to analyze remote sensing data. In this paper, the task is set to apply deep machine learning methods and methods of vegetation indices calculation to automate the detection of areas of soil degradation development on arable land. In the course of the work, a method was developed for determining the location of degraded areas of soil cover on arable fields. The method is based on the use of multi-temporal remote sensing data. The selection of suitable remote sensing data scenes is based on deep machine learning. Deep machine learning was based on an analysis of 1028 scenes of Landsats 4, 5, 7 and 8 on 530 agricultural fields. Landsat data from 1984 to 2019 was analyzed. Dataset was created manually for each pair of “Landsat scene”/“agricultural field number”(for each agricultural field, the suitability of each Landsat scene was assessed). Areas of soil degradation were calculated based on the frequency of occurrence of low NDVI values over 35 years. Low NDVI values were calculated separately for each suitable fragment of the satellite image within the boundaries of each agricultural field. NDVI values of one-third of the field area and lower than the other two-thirds were considered low. During testing, the method gave 12.5% of type I errors (false positive) and 3.8% of type II errors (false negative). Independent verification of the method was carried out on six agricultural fields on an area of 713.3 hectares. Humus content and thickness of the humus horizon were determined in 42 ground-based points. In arable land degradation areas identified by the proposed method, the probability of detecting soil degradation by field methods was 87.5%. The probability of detecting soil degradation by ground-based methods outside the predicted regions was 3.8%. The results indicate that deep machine learning is feasible for remote sensing data selection based on a binary dataset. This eliminates the need for intermediate filtering systems in the selection of satellite imagery (determination of clouds, shadows from clouds, open soil surface, etc.). Direct selection of Landsat scenes suitable for calculations has been made. It allows automating the process of constructing soil degradation maps. Numéro de notice : A2021-074 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010155 date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010155 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96810
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 155[article]Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia Type de document : Article/Communication Auteurs : Sanjiwana Arjasakusuma, Auteur ; Sandiaga Swahyu Kusuma, Auteur ; Raihan Rafif, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 663 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Java (île de)
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] Normalized Difference Built-up Index
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] rizière
[Termes descripteurs IGN] série temporelleRésumé : (auteur) The rise of Google Earth Engine, a cloud computing platform for spatial data, has unlocked seamless integration for multi-sensor and multi-temporal analysis, which is useful for the identification of land-cover classes based on their temporal characteristics. Our study aims to employ temporal patterns from monthly-median Sentinel-1 (S1) C-band synthetic aperture radar data and cloud-filled monthly spectral indices, i.e., Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and Normalized Difference Built-up Index (NDBI), from Landsat 8 (L8) OLI for mapping rice cropland areas in the northern part of Central Java Province, Indonesia. The harmonic function was used to fill the cloud and cloud-masked values in the spectral indices from Landsat 8 data, and smile Random Forests (RF) and Classification And Regression Trees (CART) algorithms were used to map rice cropland areas using a combination of monthly S1 and monthly harmonic L8 spectral indices. An additional terrain variable, Terrain Roughness Index (TRI) from the SRTM dataset, was also included in the analysis. Our results demonstrated that RF models with 50 (RF50) and 80 (RF80) trees yielded better accuracy for mapping the extent of paddy fields, with user accuracies of 85.65% (RF50) and 85.75% (RF80), and producer accuracies of 91.63% (RF80) and 93.48% (RF50) (overall accuracies of 92.10% (RF80) and 92.47% (RF50)), respectively, while CART yielded a user accuracy of only 84.83% and a producer accuracy of 80.86%. The model variable importance in both RF50 and RF80 models showed that vertical transmit and horizontal receive (VH) polarization and harmonic-fitted NDVI were identified as the top five important variables, and the variables representing February, April, June, and December contributed more to the RF model. The detection of VH and NDVI as the top variables which contributed up to 51% of the Random Forest model indicated the importance of the multi-sensor combination for the identification of paddy fields. Numéro de notice : A2020-733 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110663 date de publication en ligne : 04/11/2020 En ligne : https://doi.org/10.3390/ijgi9110663 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96346
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 663[article]Time series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data / Hemant Sahu in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Time series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data Type de document : Article/Communication Auteurs : Hemant Sahu, Auteur ; Dipanwita Haldar, Auteur ; Abhishek Danodia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1627 - 1639 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] modèle de rétrodiffusion
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] variable biophysique (végétation)
[Termes descripteurs IGN] vergerRésumé : (auteur) Potential of Sentinel-1A SAR data was assessed for the time-series analysis of orchard biophysical parameters and crop system. The study revealed characteristics variations in the backscatter coefficient with respect to time and polarization for age in VH polarization than in VV and ratio of VV/VH polarization showing discrimination of young orchard particularly in VV polarization. The parameter of the orchard (age, DBH, canopy radius and visual height) shows a promising relationship with backscatter coefficient. Out of several regression models, VV channel responds with a fair regression coefficient of 0.54, 0.52, 0.48 and 0.44 for height with rmse of 0.5, 1.3, 0.7 and 0.6 for age, DBH, canopy radius and visual height, respectively. Multiple regression coefficient of 0.61 was observed for January 2018 in VV polarization as best date for study. These empirical relationships have potential for the inverse backscatter modelling. Numéro de notice : A2020-620 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583776 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96003
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1627 - 1639[article]Forest clear-cuts as habitat for farmland birds and butterflies / Dafne Ram in Forest ecology and management, vol 473 ([01/10/2020])
![]()
[article]
Titre : Forest clear-cuts as habitat for farmland birds and butterflies Type de document : Article/Communication Auteurs : Dafne Ram, Auteur ; Åke Lindström, Auteur ; Lars B. Pettersson, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 9 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] biodiversité
[Termes descripteurs IGN] coupe rase (sylviculture)
[Termes descripteurs IGN] foresterie
[Termes descripteurs IGN] habitat animal
[Termes descripteurs IGN] oiseau
[Termes descripteurs IGN] surface cultivée
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) The intensification of agriculture has resulted in more homogeneous landscapes and declines of many species associated with farmland or other semi-natural open habitats. In parallel, forestry has also intensified causing declines in many species associated with old-growth forests. While intensive forestry negatively affects forest species, it inadvertently creates new habitats such as clear-cuts, which attracts some farmland species. To understand the potential of clear-cuts as alternative habitat for farmland species, we need to know what makes clear-cuts attractive and whether they are suitable for reproduction and survival. We reviewed literature on the occurrence of farmland birds and butterflies in forest clear-cuts and synthesise the current knowledge on factors and characteristics affecting their occurrence.
Many farmland birds and butterflies do indeed use clear-cuts, and have been found in clear-cuts up to ten years after felling. Clear-cut characteristics of importance include age, size, retention structures, land-use history and landscape composition. However, direct measures of resource abundance such as food and hostplants are often lacking. In addition to the potential benefit of individual clear-cuts, the total clear-cut area in forested regions is often large. Together with the fact that clear-cuts may be occupied by farmland species for several years, the potential of clear-cuts as alternative habitat for farmland biodiversity is substantial. Clear-cuts with a history as meadows, the presence of species of conservation importance, or shorter distance to farmland could for example be motivations for focusing conservation efforts on farmland species instead of forest species. Gaining more knowledge on how farmland species use clear-cuts, and what characteristics they depend on, could help inform management guidelines. We are no advocates for forest clear-cuts, but given their ubiquity in forested landscapes, the potential of clear-cuts as alternative habitats for species suffering from loss of suitable farmland habitats is worth serious attention from a conservation perspective.Numéro de notice : A2020-621 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.1016/j.foreco.2020.118239 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118239 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96017
in Forest ecology and management > vol 473 [01/10/2020] . - 9 p.[article]Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September 2020)
PermalinkMapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine / Aparna R. Phalke in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkMining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkAccuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkDetecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkSmall‐area patch‐merging method accounting for both local constraints and the overall area balance / Chengming Li in Transactions in GIS, Vol 24 n° 4 (August 2020)
PermalinkImproved crop classification with rotation knowledge using Sentinel-1 and -2 time series / Sébastien Giordano in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)
PermalinkAn integrated approach for detection and prediction of greening situation in a typical desert area in China and its human and climatic factors analysis / Lei Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkA convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkEstimating wheat yields in Australia using climate records, satellite image time series and machine learning methods / Elisa Kamir in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
Permalink