Descripteur


Etendre la recherche sur niveau(x) vers le bas
A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
![]()
[article]
Titre : A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery Type de document : Article/Communication Auteurs : Lucas Prado Osco, Auteur ; Mauro Dos Santos de Arruda, Auteur ; Diogo Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] carte agricole
[Termes descripteurs IGN] Citrus sinensis
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] cultures
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] gestion durable
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] maïs (céréale)
[Termes descripteurs IGN] rendement agricoleRésumé : (auteur) Accurately mapping croplands is an important prerequisite for precision farming since it assists in field management, yield-prediction, and environmental management. Crops are sensitive to planting patterns and some have a limited capacity to compensate for gaps within a row. Optical imaging with sensors mounted on Unmanned Aerial Vehicles (UAV) is a cost-effective option for capturing images covering croplands nowadays. However, visual inspection of such images can be a challenging and biased task, specifically for detecting plants and rows on a one-step basis. Thus, developing an architecture capable of simultaneously extracting plant individually and plantation-rows from UAV-images is yet an important demand to support the management of agricultural systems. In this paper, we propose a novel deep learning method based on a Convolutional Neural Network (CNN) that simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations. The experimental setup was evaluated in (a) a cornfield (Zea mays L.) with different growth stages (i.e. recently planted and mature plants) and in a (b) Citrus orchard (Citrus Sinensis Pera). Both datasets characterize different plant density scenarios, in different locations, with different types of crops, and from different sensors and dates. This scheme was used to prove the robustness of the proposed approach, allowing a broader discussion of the method. A two-branch architecture was implemented in our CNN method, where the information obtained within the plantation-row is updated into the plant detection branch and retro-feed to the row branch; which are then refined by a Multi-Stage Refinement method. In the corn plantation datasets (with both growth phases – young and mature), our approach returned a mean absolute error (MAE) of 6.224 plants per image patch, a mean relative error (MRE) of 0.1038, precision and recall values of 0.856, and 0.905, respectively, and an F-measure equal to 0.876. These results were superior to the results from other deep networks (HRNet, Faster R-CNN, and RetinaNet) evaluated with the same task and dataset. For the plantation-row detection, our approach returned precision, recall, and F-measure scores of 0.913, 0.941, and 0.925, respectively. To test the robustness of our model with a different type of agriculture, we performed the same task in the citrus orchard dataset. It returned an MAE equal to 1.409 citrus-trees per patch, MRE of 0.0615, precision of 0.922, recall of 0.911, and F-measure of 0.965. For the citrus plantation-row detection, our approach resulted in precision, recall, and F-measure scores equal to 0.965, 0.970, and 0.964, respectively. The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops. The method proposed here may be applied to future decision-making models and could contribute to the sustainable management of agricultural systems. Numéro de notice : A2021-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.024 date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97171
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 1 - 17[article]Strategy for the realisation of the International Height Reference System (IHRS) / Laura Sánchez in Journal of geodesy, vol 95 n° 4 (April 2021)
![]()
[article]
Titre : Strategy for the realisation of the International Height Reference System (IHRS) Type de document : Article/Communication Auteurs : Laura Sánchez, Auteur ; Jonas Ågren, Auteur ; Jianliang Huang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 33 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes descripteurs IGN] Association internationale de géodésie
[Termes descripteurs IGN] champ de pesanteur terrestre
[Termes descripteurs IGN] cohérence
[Termes descripteurs IGN] coordonnées géodésiques
[Termes descripteurs IGN] hauteur ellipsoïdale
[Termes descripteurs IGN] International Terrestrial Reference Frame
[Termes descripteurs IGN] modèle de géopotentiel
[Termes descripteurs IGN] norme
[Termes descripteurs IGN] potentiel de pesanteur terrestre
[Termes descripteurs IGN] système de référence altimétrique
[Termes descripteurs IGN] système international de référence altimétriqueRésumé : (auteur) In 2015, the International Association of Geodesy defined the International Height Reference System (IHRS) as the conventional gravity field-related global height system. The IHRS is a geopotential reference system co-rotating with the Earth. Coordinates of points or objects close to or on the Earth’s surface are given by geopotential numbers C(P) referring to an equipotential surface defined by the conventional value W0 = 62,636,853.4 m2 s−2, and geocentric Cartesian coordinates X referring to the International Terrestrial Reference System (ITRS). Current efforts concentrate on an accurate, consistent, and well-defined realisation of the IHRS to provide an international standard for the precise determination of physical coordinates worldwide. Accordingly, this study focuses on the strategy for the realisation of the IHRS; i.e. the establishment of the International Height Reference Frame (IHRF). Four main aspects are considered: (1) methods for the determination of IHRF physical coordinates; (2) standards and conventions needed to ensure consistency between the definition and the realisation of the reference system; (3) criteria for the IHRF reference network design and station selection; and (4) operational infrastructure to guarantee a reliable and long-term sustainability of the IHRF. A highlight of this work is the evaluation of different approaches for the determination and accuracy assessment of IHRF coordinates based on the existing resources, namely (1) global gravity models of high resolution, (2) precise regional gravity field modelling, and (3) vertical datum unification of the local height systems into the IHRF. After a detailed discussion of the advantages, current limitations, and possibilities of improvement in the coordinate determination using these options, we define a strategy for the establishment of the IHRF including data requirements, a set of minimum standards/conventions for the determination of potential coordinates, a first IHRF reference network configuration, and a proposal to create a component of the International Gravity Field Service (IGFS) dedicated to the maintenance and servicing of the IHRS/IHRF. Numéro de notice : A2021-260 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01481-0 date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1007/s00190-021-01481-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97300
in Journal of geodesy > vol 95 n° 4 (April 2021) . - n° 33[article]Utilizing urban geospatial data to understand heritage attractiveness in Amsterdam / Sevim Sezi Karayazi in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
![]()
[article]
Titre : Utilizing urban geospatial data to understand heritage attractiveness in Amsterdam Type de document : Article/Communication Auteurs : Sevim Sezi Karayazi, Auteur ; Gamze Dane, Auteur ; Bauke de Vries, Auteur Année de publication : 2021 Article en page(s) : n° 198 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Amsterdam
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] attractivité (aménagement)
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] gestion durable
[Termes descripteurs IGN] image Flickr
[Termes descripteurs IGN] musée
[Termes descripteurs IGN] patrimoine
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] tourismeRésumé : (auteur) Touristic cities are home to historical landmarks and irreplaceable urban heritages. Although tourism brings financial advantages, mass tourism creates pressure on historical cities. Therefore, “attractiveness” is one of the key elements to explain tourism dynamics. User-contributed and geospatial data provide an evidence-based understanding of people’s responses to these places. In this article, the combination of multisource information about national monuments, supporting products (i.e., attractions, museums), and geospatial data are utilized to understand attractive heritage locations and the factors that make them attractive. We retrieved geotagged photographs from the Flickr API, then employed density-based spatial clustering of applications with noise (DBSCAN) algorithm to find clusters. Then combined the clusters with Amsterdam heritage data and processed the combined data with ordinary least square (OLS) and geographically weighted regression (GWR) to identify heritage attractiveness and relevance of supporting products in Amsterdam. The results show that understanding the attractiveness of heritages according to their types and supporting products in the surrounding built environment provides insights to increase unattractive heritages’ attractiveness. That may help diminish the burden of tourism in overly visited locations. The combination of less attractive heritage with strong influential supporting products could pave the way for more sustainable tourism in Amsterdam. Numéro de notice : A2021-304 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10040198 date de publication en ligne : 25/03/2021 En ligne : https://doi.org/10.3390/ijgi10040198 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97424
in ISPRS International journal of geo-information > vol 10 n° 4 (April 2021) . - n° 198[article]Development and assessment of rainwater harvesting suitability map using analytical hierarchy process, GIS and RS techniques / Khaled S. Balkhair in Geocarto international, vol 36 n° 4 ([01/03/2021])
![]()
[article]
Titre : Development and assessment of rainwater harvesting suitability map using analytical hierarchy process, GIS and RS techniques Type de document : Article/Communication Auteurs : Khaled S. Balkhair, Auteur ; Khalil Ur Rahman, Auteur Année de publication : 2021 Article en page(s) : pp 421 - 448 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] Arabie Saoudite
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] carte hydrographique
[Termes descripteurs IGN] eau pluviale
[Termes descripteurs IGN] écoulement des eaux
[Termes descripteurs IGN] gestion de l'eau
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Rainwater harvesting (RWH), which is the collection and storage of rainwater for multiple purposes, is gaining recognition in water supply issues. Selection of harvesting sites is the most critical factor in RWH projects. The objective of this study is to develop a suitability map of RWH sites for a basin in Saudi Arabia. The method used, constitute the identification and assigning weights to criteria, and generation of suitability map using Analytical Hierarchy Process (AHP). Eight appropriate criteria were considered. Results showed that excellent and good sites covered about 40.6% of the total available sites. Sensitivity analysis showed that the curve number (CN), slope, rainfall and soil were the most influential criteria. The maximum increase in the percentage area of excellent sites was 92% while good and moderate classes decreased by 43 and 53%, respectively. The developed suitability maps provide useful information to the decision maker for use in water management. Numéro de notice : A2021-162 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.160859 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1608591 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97082
in Geocarto international > vol 36 n° 4 [01/03/2021] . - pp 421 - 448[article]A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (March 2021)
![]()
[article]
Titre : A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm Type de document : Article/Communication Auteurs : Sara Khanbani, Auteur ; Ali Mohammadzadeh, Auteur ; Milad Janalipour, Auteur Année de publication : 2021 Article en page(s) : pp 89 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] Alaska (Etats-Unis)
[Termes descripteurs IGN] algorithme génétique
[Termes descripteurs IGN] changement temporel
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] coût
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] seuillageRésumé : (auteur) Change Detection (CD) problem from remotely sensed images is a popular topic among researchers. Because of the diversity in the problem of change detection and the complexity of the study areas it cannot be claimed that there is an appropriate and prevalent algorithm which is more effective for different types of the case study. As a fundamental investigation, it is critical to recognize the weaknesses of the state of artworks in change detection. Also, those examined weaknesses have to be improved aptly to develop a new strong method. This paper presents a thresholding algorithm improved by the Genetic Algorithm (GA) in CD problems, which focuses on minimizing a novel cost function. The suggested cost function can be adopted for local and global change variations in difference images without any prior assumptions. The presented algorithm was tested on two data sets (i.e., Alaska region and Uremia Lake) to validate its effectiveness. Experimental results demonstrated that the proposed algorithm in this work has improved the accuracy of change detection (changed pixel accuracy term) in the Alaska region about 8%–12% and also in Uremia Lake approximately between 8%–13% in comparison with other conventional methods including Fuzzy C- Means (FCM), Otsu thresholding, K-Means, and K-Medoid. Numéro de notice : A2021-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00323-6 date de publication en ligne : 22/06/2020 En ligne : https://doi.org/10.1007/s12518-020-00323-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97246
in Applied geomatics > vol 13 n° 1 (March 2021) . - pp 89 - 105[article]Crowdsourcing without data bias: Building a quality assurance system for air pollution symptom mapping / Marta Samulowska in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
PermalinkEstimating the impacts of proximity to public transportation on residential property values: An empirical analysis for Hartford and Stamford areas, Connecticut / Bo Zhang in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
PermalinkJoint promotion partner recommendation systems using data from location-based social networks / Yi-Chung Chen in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
PermalinkMitigating urban visual pollution through a multistakeholder spatial decision support system to optimize locational potential of billboards / Khydija Wakil in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
PermalinkPopulation dynamics and natural hazard risk management: conceptual and practical linkages for the case of Austrian policy making / Christoph Clar in Natural Hazards, Vol 105 n° 2 (January 2021)
PermalinkChinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data / Yunhao Zheng in Computers, Environment and Urban Systems, vol 85 (January 2021)
PermalinkA framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkInfrastructure of the spatial information in the European Community (INSPIRE) based on examples of Italy and Poland / Marek Ogryzek in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)
PermalinkLegal aspects of registration the time of cadastral data creation or modification / Joanna Reczyńska in Reports on geodesy and geoinformatics, vol 110 n°1 (December 2020)
PermalinkNon-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards / Erwann Le Roux in Natural Hazards and Earth System Sciences, vol 20 n° 11 (November 2020)
PermalinkPermalinkCoupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones / Xun Liang in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkGenèse d'une norme internationale géodésique : l'ITRS et ses réalisations / Thierry Gattacceca in XYZ, n° 164 (septembre 2020)
PermalinkPermalinkRelevé 3D et classification de nuages de points de patrimoine bâti / Arnadi Murtiyoso in XYZ, n° 164 (septembre 2020)
PermalinkAux sources institutionnelles de l’enregistrement et du cadastre fonciers au Québec / Francis Roy in XYZ, n° 164 (septembre 2020)
PermalinkGeneration of crowd arrival and destination locations/times in complex transit facilities / Brian Ricks in The Visual Computer, vol 36 n° 8 (August 2020)
PermalinkMutualiser la donnée pour une information utile / Jean-Marie Séïté in Géomètre, n° 2182 (juillet - août 2020)
PermalinkPredictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax / Jose Morales in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
PermalinkSimulating urban land use change by integrating a convolutional neural network with vector-based cellular automata / Yaqian Zhai in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
Permalink