Descripteur



Etendre la recherche sur niveau(x) vers le bas
VNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada / Kathleen E. Johnson in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
![]()
[article]
Titre : VNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada Type de document : Article/Communication Auteurs : Kathleen E. Johnson, Auteur ; Krzysztof Koperski, Auteur Année de publication : 2020 Article en page(s) : pp 695 - 700 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] cartographie géologique
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] minéralogie
[Termes descripteurs IGN] Nevada (Etats-Unis)
[Termes descripteurs IGN] réalité de terrain
[Termes descripteurs IGN] Short Waves InfraRedRésumé : (Auteur) Cuprite, Nevada, is a location well known for numerous studies of its hydrothermal mineralogy. This region has been used to validate geological interpretations of airborne hyperspectral imagery (AVIRIS HSI ), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER ) imagery, and most recently eight-band WorldView-3 shortwave infrared (SWIR ) imagery. WorldView-3 is a high-spatial-resolution commercial multispectral satellite sensor with eight visible-to-near-infrared (VNIR ) bands (0.42–1.04 μm) and eight SWIR bands (1.2–2.33 μm). We have applied mineral mapping techniques to all 16 bands to perform a geological analysis of the Cuprite, Nevada, location. Ground truth for the training and validation was derived from AVIRIS hyperspectral data and United States Geological Survey mineral spectral data for this location. We present the results of a supervised mineral-mapping classification applying a random-forest classifier. Our results show that with good ground truth, WorldView-3 SWIR + VNIR imagery produces an accurate geological assessment. Numéro de notice : A2020-709 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.11.695 date de publication en ligne : 01/11/2020 En ligne : https://doi.org/10.14358/PERS.86.11.695 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96395
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 11 (November 2020) . - pp 695 - 700[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020111 SL Revue Centre de documentation Revues en salle Disponible Aqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy / Hrishikesh Kumar in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
![]()
[article]
Titre : Aqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy Type de document : Article/Communication Auteurs : Hrishikesh Kumar, Auteur ; A.S. Rajawat, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] cartographie géologique
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] minéral
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] Rajasthan (Inde ; état)
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] roche
[Termes descripteurs IGN] spectroradiométrieRésumé : (auteur) Hyperspectral remote sensing/imaging spectroscopy has enabled precise identification and mapping of hydrothermal alteration mineral assemblages based on diagnostic absorption features of minerals. In the present study, we use Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) datasets acquired over Rishabdev ultramafic suite to derive surficial mineral map using least square based spectral shape matching in wavelength range of diagnostic absorption features of minerals. Resulting mineral map revealed presence of hydrothermally altered serpentine group of minerals and associated alteration products (talc and dolomite) along with clays and phyllosilicates. Mineral maps are validated using field spectral measurements and published geological map. Involvement of low temperature ( Numéro de notice : A2020-449 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2020.102084 date de publication en ligne : 14/02/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102084 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95525
in International journal of applied Earth observation and geoinformation > vol 88 (June 2020)[article]Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
![]()
[article]
Titre : Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California Type de document : Article/Communication Auteurs : Matthew L. Clark, Auteur Année de publication : 2020 Article en page(s) : pp 26 - 40 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] Californie (Etats-Unis)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] couvert végétal
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Short Waves InfraRedRésumé : (Auteur) The current era of earth observation now provides constellations of open-access, multispectral satellite imagery with medium spatial resolution, greatly increasing the frequency of cloud-free data for analysis. The Landsat satellites have a long historical record, while the newer Sentinel-2 (S2) satellites offer higher temporal, spatial and spectral resolution. The goal of this study was to evaluate the relative benefits of single- and multi-seasonal multispectral satellite data for discriminating detailed forest alliances, as defined by the U.S. National Vegetation Classification system, in a Mediterranean-climate landscape (Sonoma County, California). Results were compared to a companion analysis of simulated hyperspectral satellite data (HyspIRI) for the same study site and reference data (Clark et al., 2018). Experiments used real and simulated S2 and Landsat 8 (L8) data. Simulated S2 and L8 were from HyspIRI images, thereby focusing results on differences in spectral resolution rather than other confounding factors. The Support Vector Machine (SVM) classifier was used in a hierarchical classification of land-cover (Level 1), followed by alliances (Level 2) in forest pixels, and included summer-only and multi-seasonal sets of predictor variables (bands, indices and bands plus indices). Both real and simulated multi-seasonal multispectral variables significantly improved overall accuracy (OA) by 0.2–1.6% for Level 1 tree/no tree classifications and 3.6–25.8% for Level 2 forest alliances. Classifiers with S2 variables tended to be more accurate than L8 variables, particularly for S2, which had 0.4–2.1% and 5.1–11.8% significantly higher OA than L8 for Level 1 tree/no tree and Level 2 forest alliances, respectively. Combining multispectral bands and indices or using just bands was generally more accurate than relying on just indices for classification. Simulated HyspIRI variables from past research had significantly greater accuracy than real L8 and S2 variables, with an average OA increase of 8.2–12.6%. A final alliance-level map used for a deeper analysis used simulated multi-seasonal S2 bands and indices, which had an overall accuracy of 74.3% (Kappa = 0.70). The accuracy of this classification was only 1.6% significantly lower than the best HyspIRI-based classification, which used multi-seasonal metrics (Clark et al., 2018), and there were alliances where the S2-based classifier was more accurate. Within the context of these analyses and study area, S2 spectral-temporal data demonstrated a strong capability for mapping global forest alliances, or similar detailed floristic associations, at medium spatial resolutions (10–30 m). Numéro de notice : A2020-011 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.007 date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94399
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 26 - 40[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 SL Revue Centre de documentation Revues en salle Disponible 081-2020013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Learning and transferring deep joint spectral–spatial features for hyperspectral classification / Jingxiang Yang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
![]()
[article]
Titre : Learning and transferring deep joint spectral–spatial features for hyperspectral classification Type de document : Article/Communication Auteurs : Jingxiang Yang, Auteur ; Yong-Qiang Zhao, Auteur ; Jonathan Cheung-Wai Chan, Auteur Année de publication : 2017 Article en page(s) : pp 4729 - 4742 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] filtrage numérique d'image
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image ROSIS
[Termes descripteurs IGN] réseau neuronal convolutifRésumé : (Auteur) Feature extraction is of significance for hyperspectral image (HSI) classification. Compared with conventional hand-crafted feature extraction, deep learning can automatically learn features with discriminative information. However, two issues exist in applying deep learning to HSIs. One issue is how to jointly extract spectral features and spatial features, and the other one is how to train the deep model when training samples are scarce. In this paper, a deep convolutional neural network with two-branch architecture is proposed to extract the joint spectral-spatial features from HSIs. The two branches of the proposed network are devoted to features from the spectral domain as well as the spatial domain. The learned spectral features and spatial features are then concatenated and fed to fully connected layers to extract the joint spectral-spatial features for classification. When the training samples are limited, we investigate the transfer learning to improve the performance. Low and mid-layers of the network are pretrained and transferred from other data sources; only top layers are trained with limited training samples extracted from the target scene. Experiments on Airborne Visible/Infrared Imaging Spectrometer and Reflective Optics System Imaging Spectrometer data demonstrate that the learned deep joint spectral-spatial features are discriminative, and competitive classification results can be achieved when compared with state-of-the-art methods. The experiments also reveal that the transferred features boost the classification performance. Numéro de notice : A2017-503 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2698503 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2698503 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86448
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4729 - 4742[article]Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks / Shaohui Mei in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
![]()
[article]
Titre : Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks Type de document : Article/Communication Auteurs : Shaohui Mei, Auteur ; Jingyu Ji, Auteur ; Junhui Hou, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4520 - 4533 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] extraction de couche
[Termes descripteurs IGN] filtrage numérique d'image
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image ROSIS
[Termes descripteurs IGN] réseau neuronal convolutifRésumé : (Auteur) Convolutional neural network (CNN) is well known for its capability of feature learning and has made revolutionary achievements in many applications, such as scene recognition and target detection. In this paper, its capability of feature learning in hyperspectral images is explored by constructing a five-layer CNN for classification (C-CNN). The proposed C-CNN is constructed by including recent advances in deep learning area, such as batch normalization, dropout, and parametric rectified linear unit (PReLU) activation function. In addition, both spatial context and spectral information are elegantly integrated into the C-CNN such that spatial-spectral features are learned for hyperspectral images. A companion feature-learning CNN (FL-CNN) is constructed by extracting fully connected feature layers in this C-CNN. Both supervised and unsupervised modes are designed for the proposed FL-CNN to learn sensor-specific spatial-spectral features. Extensive experimental results on four benchmark data sets from two well-known hyperspectral sensors, namely airborne visible/infrared imaging spectrometer (AVIRIS) and reflective optics system imaging spectrometer (ROSIS) sensors, demonstrate that our proposed C-CNN outperforms the state-of-the-art CNN-based classification methods, and its corresponding FL-CNN is very effective to extract sensor-specific spatial-spectral features for hyperspectral application Numéro de notice : A2017-499 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2693346 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2693346 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86441
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4520 - 4533[article]Uniformity-based superpixel segmentation of hyperspectral images / Arun M. Saranathan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)
PermalinkReal-time atmospheric correction of AVIRIS-NG imagery / Brian D. Bue in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)
PermalinkSequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)
PermalinkHyperspectral image classification using nearest feature line embedding approach / Yang-Lang Chang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
PermalinkGeneralized composite kernel framework for hyperspectral image classification / J. Li in IEEE Transactions on geoscience and remote sensing, vol 51 n° 9 (September 2013)
PermalinkSemisupervised self-learning for hyperspectral image classification / Immaculada Dopido in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)
PermalinkSpectral unmixing in multiple-kernel Hilbert space for hyperspectral imagery / Yanfeng Gu in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)
PermalinkUtility of the wavelet transform for LAI estimation using hyperspectral data / Asim Banskota in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 7 (July 2013)
PermalinkView generation for multiview maximum disagreement based active learning for hyperspectral image classification / W. Di in IEEE Transactions on geoscience and remote sensing, vol 50 n° 5 Tome 2 (May 2012)
PermalinkPixel unmixing in hyperspectral data by means of neural networks / Giorgio Licciardi in IEEE Transactions on geoscience and remote sensing, vol 49 n° 11 Tome 1 (November 2011)
Permalink