Descripteur
Termes IGN > environnement > protection de l'environnement > patrimoine naturel > aire protégée
aire protégée
Commentaire :
Arrêté de biotope, Espace naturel protégé, Monument naturel, Zone de protection, Zone protégée. Espace naturel. >> Espace naturel -- Protection. >>Terme(s) spécifique(s) : Centre de diversité végétale, Parc marin, Parc national, Parc naturel régional, Réserve naturelle, Site naturel protégé, Zone de protection du patrimoine architectural, urbain et paysager, Natura 2000. Equiv. LCSH : Protected areas. Domaine(s) : 577. Synonyme(s)zone protégéeVoir aussi |
Documents disponibles dans cette catégorie (43)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany / Laura Horst in Applied Geography, vol 150 (January 2023)
[article]
Titre : Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany Type de document : Article/Communication Auteurs : Laura Horst, Auteur ; Karolina Taczanowska, Auteur ; Florian Porst, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 102825 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] aire protégée
[Termes IGN] ArcGIS
[Termes IGN] Bavière (Allemagne)
[Termes IGN] distribution spatiale
[Termes IGN] données GNSS
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] géodatabase
[Termes IGN] parc naturel national
[Termes IGN] piétonRésumé : (auteur) Systematic monitoring of recreational use in vulnerable ecosystems is crucial to balance human needs and site capacities. Recently, publicly available digital data, including Global Navigation Satellite System-based Volunteered Geographic Information, gained attention as a potential resource depicting visitor movement. However, there is a need to critically assess its reliability for visitor monitoring across countries, regions and available databases. Our research evaluates the usability of GNSS-based VGI-data obtained from three common platforms: GPSies, Outdooractive, and Komoot for assessing the spatial distribution of hikers in the Bavarian Forest National Park. A total sample of 1742 GNSS-tracks uploaded between 2013 and 2018 were compared across data platforms. Additionally, available systematic field counts, carried out between 2013 and 2014 (11 Eco-Counter sensors), were compared to GNSS-based VGI data uploaded within the corresponding period. The comparisons at individual and collective levels (route lengths, kernel density, optimized hotspot analysis along with fishnet-based counts of GNSS-tracks) showed similarities between VGI data platforms. Data obtained from GPSies and Outdooractive displayed a higher correlation with each other than with those obtained from Komoot. Also, for GPSies, there was a significant positive correlation between VGI-data and field count data. Data sample of Outdooractive and Komoot within the specified spatio-temporal frame was too small to compare with available field count data. We highlight the necessity of systematic validation of GNSS-based VGI data resources, being complementary rather than the primary data source in visitor monitoring and recreation planning. Also, systematic long-term visitor monitoring using other methods is crucial to assess the validity of novel data resources, such as GNSS-based VGI. Numéro de notice : A2023-020 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.apgeog.2022.102825 Date de publication en ligne : 25/11/2023 En ligne : https://doi.org/10.1016/j.apgeog.2022.102825 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102220
in Applied Geography > vol 150 (January 2023) . - n° 102825[article]Integration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) / Vahid Nasiri in Arabian Journal of Geosciences, vol 15 n° 24 (December 2022)
[article]
Titre : Integration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Arnaud Le Bris , Auteur ; Ali Asghar Darvishsefat, Auteur ; Fardin Moradi, Auteur Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : n° 1759 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] aire protégée
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SARRésumé : (auteur) Considering the importance of accurate and up-to-date land use/cover (LULC) maps and in a situation of fast LULC changes, an accurate mapping of complex landscapes requires real-time high-resolution remote sensed data and powerful classification algorithms. The new ESA Copernicus satellites Sentinel-1 (S-1) and Sentinel-2 (S-2) have contributed to the effective monitoring of the Earth’s surface. This paper aims at assessing the potential of mono-temporal S-1 and S-2 satellite images and three common classification algorithms including maximum likelihood (ML), support vector machine (SVM), and random forest (RF) for LULC classification. The research methodology consists of a sequence of tasks including data collection and preprocessing, the extraction of texture and spectral features, the definition of several feature set configurations, classification, and accuracy assessment. Based on the results, using S-1 data alone leads to quite poor results, even though dual polarimetric C-band and texture features increased the classification accuracy. The S-2 data outperformed the S-1 data in terms of overall and class level accuracies. A combined use of S-1 and S-2 satellite images involving extracted features from both sources led to the best result for identifying all classes. This emphasizes the critical importance of using multi-modal datasets and different features in the LULC classification. Among classification algorithms, the SVM led to the highest accuracies irrespective of the dataset. To sum it up, according to the applied methodology and results, S-1 and S-2 data can provide optimal and up-to-date information for LULC mapping using non-parametric classifiers as SVM or RF. Numéro de notice : A2022-699 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12517-022-11035-z Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1007/s12517-022-11035-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102253
in Arabian Journal of Geosciences > vol 15 n° 24 (December 2022) . - n° 1759[article]Spatial assessment of ecosystem services provisioning changes in a forest-dominated protected area in NE Turkey / Can Vatandaslar in Environmental Monitoring and Assessment, vol 194 n° 8 (August 2022)
[article]
Titre : Spatial assessment of ecosystem services provisioning changes in a forest-dominated protected area in NE Turkey Type de document : Article/Communication Auteurs : Can Vatandaslar, Auteur Année de publication : 2022 Article en page(s) : n° 539 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aire protégée
[Termes IGN] analyse spatio-temporelle
[Termes IGN] parc naturel national
[Termes IGN] protection de l'environnement
[Termes IGN] service écosystémique
[Termes IGN] TurquieRésumé : (auteur) Forested landscapes offer high provisioning capacities for many ecosystem services (ES), yet their capabilities may change in time due to multifaceted ES drivers. Therefore, assessing the changes in individual ES is critical for ecosystem-based management. This study analyzes the spatio-temporal changes in ES provided by a forest-dominated protected area in NE, Turkey. To this end, 18 ES were quantified and mapped using the ES matrix approach for 1985 and 2021. Then, the status of the ES and potential drivers of landscape changes were revealed through the assessment of demographic and management structure changes. The results showed that the multiple ES provisioning capacity of the landscape increased by 7% over 35 years. The capacities for “crops” and “livestock” ES decreased for the same period. The most prominent ES were “wild foods,” “erosion regulation,” and “knowledge systems.” Spatially, ES hotspots accumulated in the northern parts and the core zone of the protected area. The most significant changes occurred in the lowlands, mostly composed of degraded forests and coppices as of 1985 after their transformation into productive forests. The spatio-temporal changes in many ES can be attributed to the declaration of the landscape as a protected area in 1994. The removal of anthropogenic pressure and the impact of conservation management can be evaluated as the main drivers for the positive changes in the total ES capacity. Thus, sound policy structures and effective conservation strategies should be further encouraged for increasing protected areas’ capacities to provide the large array of ES. Numéro de notice : A2022-459 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article DOI : 10.1007/s10661-022-10212-7 Date de publication en ligne : 29/06/2022 En ligne : http://dx.doi.org/10.1007/s10661-022-10212-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101260
in Environmental Monitoring and Assessment > vol 194 n° 8 (August 2022) . - n° 539[article]An assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 / Darius Phiri in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : An assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 Type de document : Article/Communication Auteurs : Darius Phiri, Auteur ; Collins Chanda, Auteur ; Vincent R. Nyirenda, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 148 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse diachronique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par arbre de décision
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] gestion forestière durable
[Termes IGN] protection de la biodiversité
[Termes IGN] ZambieRésumé : (auteur) In sub-Saharan Africa, protected areas provide a platform for conserving biodiversity. However, these areas are facing massive pressure due to deforestation, and information on forest dynamics and factors driving the changes in protected areas is generally lacking. This study has two objectives: (1) to assess forest cover changes that have occurred between 1972 and 2016 in Copperbelt Province’s protected areas, and (2) understand the drivers of forest cover changes. The study used thematic land cover maps for six selected years, which were classified using an object-based image analysis (OBIA) approach. We also applied a Classification Tree (CT) approach to assess the drivers of forest cover changes using R statistical software. The findings showed that forest cover in protected areas has been characterised by massive deforestation due to various factors. Between 1972 and 2016, primary and secondary forests showed a decrease of 2,226.43 km2 (11.06%) and an increase of 1,082.93 km2 (4.05%), respectively. The major factors driving forest changes include the levels of precipitation, human population density, elevation, distance from roads, towns and rivers. This study presents consistent information for long-term forest monitoring in protected areas, and informs decision-makers on the levels of deforestation and their drivers for effective forest management. Numéro de notice : A2022-092 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1080/19475705.2021.2017021 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/19475705.2021.2017021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99515
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 148 - 166[article]Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds / Alwin A. Hardenbol in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds Type de document : Article/Communication Auteurs : Alwin A. Hardenbol, Auteur ; Anton Kuzmin, Auteur ; Lauri Korhonen, Auteur ; Pasi Korpelainen, Auteur ; Timo Kumpula, Auteur ; Matti Maltamo, Auteur ; Jari Kouki, Auteur Année de publication : 2021 Article en page(s) : n° 10515 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse discriminante
[Termes IGN] Betula (genre)
[Termes IGN] détection d'arbres
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] orthoimage couleur
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Populus tremula
[Termes IGN] semis de points
[Termes IGN] variation saisonnièreRésumé : (auteur) Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen (Populus tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests (Pinus sylvestris L., Picea abies [L.] Karst., Betula spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (May–September), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably. Numéro de notice : A2021-735 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10515 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.14214/sf.10515 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98691
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10515[article]Evaluation of light pollution in global protected areas from 1992 to 2018 / Haowei Mu in Remote sensing, vol 13 n° 9 (May-1 2021)PermalinkStreams and rural abandonment are related to the summer activity of the invasive pest Drosophila suzukii in protected European forests / Alberto Maceda-Veiga in Forest ecology and management, vol 485 ([01/04/2021])PermalinkComplémentarité des images optiques Sentinel-2 avec les images radar Sentinel-1 et ALOS-PALSAR-2 pour la cartographie de la couverture végétale : application à une aire protégée et ses environs au Nord-Ouest du Maroc via trois algorithmes d’apprentissage automatique / Siham Acharki in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)PermalinkAccurate assessment of protected area boundaries for land use planning using 3D GIS / Dilek Tezel in Geocarto international, vol 36 n° 1 ([01/01/2021])PermalinkPermalinkLa biodiversité, une ressource, mais aussi un fardeau ? Intérêt et limites des notions de services et disservices écosystémiques pour repenser les interactions nature-sociétés dans les territoires ruraux / Julien Blanco in VertigO, vol 20 n° 3 (décembre 2020)PermalinkCombining optical and radar satellite image time series to map natural vegetation: savannas as an example / Maylis Lopes in Remote sensing in ecology and conservation, vol 6 n° 3 (September 2020)PermalinkVisualizing when, where, and how fires happen in U.S. parks and protected areas / Nicole C. Inglis in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)PermalinkWhat Is threatening forests in protected areas? A global assessment of deforestation in protected areas, 2001–2018 / Christopher M. Wade in Forests, vol 11 n° 5 (May 2020)PermalinkPlant survival monitoring with UAVs and multispectral data in difficult access afforested areas / Maria Luz Gil-Docampo in Geocarto international, vol 35 n° 2 ([01/02/2020])Permalink