Descripteur
Documents disponibles dans cette catégorie (2766)


Etendre la recherche sur niveau(x) vers le bas
Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; David Ellison, Auteur ; Hans Petersson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] changement climatique
[Termes IGN] données spatiotemporelles
[Termes IGN] Finlande
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] précision de l'estimation
[Termes IGN] récolte de bois
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (Auteur) Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Numéro de notice : A2022-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01120-4 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01120-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100013
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 2[article]Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics / Jakob Wernicke in Remote sensing of environment, vol 279 (15 September 2022)
![]()
[article]
Titre : Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics Type de document : Article/Communication Auteurs : Jakob Wernicke, Auteur ; Christian Torsten Seltmann, Auteur ; Ralf Wenzel, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113134 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Allemagne
[Termes IGN] analyse comparative
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] semis de points
[Termes IGN] stratificationRésumé : (auteur) Knowledge about the forest canopy stratification is of essential importance for forest management and planning. Collecting structural information (e.g. natural regeneration) still depends on cost and labour intensive forest inventories with a coarse spatio-temporal resolution. Remote sensing partly overcomes these limitations and particularly active sensors of type light detection and ranging (LiDAR) have proven their great potential of separating forest strata. The applicability of LiDAR metrics for the differentiation of the spruce dominated forest strata in Central Germany has not been tested yet. Additionally, studying the potential of Sentinel-2 metrics for the classification of forest strata is lacking too. In this study, we investigated the capabilities of six different classification approaches for the differentiation of five forest strata that are typical for the study region. Reference data were derived from forest inventory measurements surveyed on a dense 200 × 200 m grid. The six classification approaches were trained with fused and un-fused LiDAR and Sentinel-2 inferred metrics. The classification results were compared using the overall mean accuracy, sensitivity and specificity via receivers operating characteristics of multi-class problems. We were interested in the classification abilities of Sentinel-2 metrics due to the obvious advantages of Sentinel-2 based metrics (free of charge, high spatio-temporal coverage). We assumed that the canopy structure determines the reflection on stand level and thus might facilitate the classification of different canopy strata. Beforehand, it was important to examine the influence of distinctly imbalanced and collinear reference data on the classification results. We found that the Random Forest classifier most accurately separated the five forest strata with a mean overall accuracy of 83.3% (Kappa = 76.2%). These values were achieved from balanced training data and the classification capability was confirmed by classification results from an independent test data set. Fused predictors of active (LiDAR) and passive (Sentinel-2) remote sensing revealed no substantial improvement in the classification accuracy due to the dominant role of LiDAR metrics. Herein, we identified that especially the height variability, top height, portion of LiDAR-returns between 2 m and 10 m and the standard deviation of the return number between the 25th and 50th height percentile, predominately contributed to the classification accuracy. Classification results purely based on Sentinel-2 metrics revealed a rather small overall mean accuracy of 54.7%. The metrics (e.g. median, variance, entropy) were derived from Sentinel-2 indices, covering the visible and near to short infrared spectrum. Variable importance computations unraveled a detectable but minor contribution of MSI, TCG, NDVI to the classification result. Finally, our data driven observations illustrated serious drawbacks associated to data imbalance, collinearity and autocorrelation and presented practical guidance to cope with these issues. Numéro de notice : A2022-510 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113134 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101047
in Remote sensing of environment > vol 279 (15 September 2022) . - n° 113134[article]The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation / Shuaijun Liu in Remote sensing of environment, vol 279 (15 September 2022)
![]()
[article]
Titre : The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation Type de document : Article/Communication Auteurs : Shuaijun Liu, Auteur ; Junxiong Zhou, Auteur ; Yuean Qiu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] autocorrélation
[Termes IGN] bande spectrale
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion de données
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] réflectance de surface
[Termes IGN] réflectance spectrale
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] régression multipleRésumé : (auteur) Over the past decade, spatiotemporal fusion has become an indispensable tool for monitoring land surface dynamics due to its promising ability to produce surface reflectance products with both high spatial and temporal resolutions. However, existing fusion methods usually generate multispectral band products by predicting each spectral band separately, so the useful information of spectral autocorrelation within the spectrum has been ignored and waits to be exploited. To address this issue, we propose a novel spatiotemporal fusion method, the spatiotemporal Fusion Incorrporting Spectral autocorrelaTion (FIRST) model, to fully utilize the multiple spectral bands of surface reflectance products. Compared with other fusion methods, the model has three distinct advantages: (1) it utilizes spectral autocorrelation in a many-to-many regression framework that simultaneously inputs and predicts multispectral bands without the collinearity effect; (2) it maintains high fusion accuracy when the spatiotemporal variation is large with acceptable computational efficiency; and (3) it can produce robust results even with input images contaminated by haze and thin clouds. We tested the FIRST model at several experimental sites and compared it with four typical methods, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal DAta Fusion (FSDAF) model, the regression model Fitting, spatial Filtering and residual Compensation (Fit-FC) model and the enhanced STARFM (ESTARFM). The results demonstrate that FIRST yields better overall performance for its simple and effective technical principles. FIRST is thus expected to provide high-quality remotely sensed data with high spatial resolution and frequent observations for various applications. Numéro de notice : A2022-554 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113111 Date de publication en ligne : 16/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113111 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101166
in Remote sensing of environment > vol 279 (15 September 2022) . - n° 113111[article]A general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : A general model for creating robust choropleth maps Type de document : Article/Communication Auteurs : Wangshu Mu, Auteur ; Daoqin Tong, Auteur Année de publication : 2022 Article en page(s) : n° 101850 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] carte choroplèthe
[Termes IGN] incertitude des données
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] méthode robuste
[Termes IGN] optimisation par essaim de particules
[Termes IGN] programmation dynamiqueRésumé : (auteur) Choropleth maps visualize areal geographical data by grouping data into a few map classes and assigning different colors, shades, or patterns. Recent studies show that data uncertainty, commonly observed in real-life applications, should also be accounted for when determining the best classification scheme. Due to data uncertainty, a few studies note that map units might be placed in a wrong class, and the concept of map robustness has been introduced to minimize such misplacement. Recently, an algorithm has been developed to integrate robustness into the design of the optimal map classification scheme. However, the existing algorithm has two limitations: first, it is only suitable for certain robustness metrics. Second, when identifying the optimal class breaks, the existing algorithm requires predefined candidate class break values, which might lead to sub-optimal solutions. This paper resolves these issues by proposing a new model, namely, the Continuous Robust Map Classification Problem (CRMCP), and the associated solution approach. The CRMCP allows mapmakers to customize robustness metrics according to their data and applications. In addition, a particle swarm optimization algorithm is developed to solve the CRMCP. The model and algorithm are tested using American Community Survey data. Test results suggest that the new approach can find better solutions than the existing algorithm. The study improves the usability of choropleth maps when uncertain geographical attributes are involved and allows spatial analysts and decision-makers to incorporate robustness into the mapmaking process more flexibly. Numéro de notice : A2022-514 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101850 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101850 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101055
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101850[article]A map matching-based method for electric vehicle charging station placement at directional road segment level / Zhoulin Yu in Sustainable Cities and Society, vol 84 (September 2022)
![]()
[article]
Titre : A map matching-based method for electric vehicle charging station placement at directional road segment level Type de document : Article/Communication Auteurs : Zhoulin Yu, Auteur ; Zhouhao Wu, Auteur ; Qihui Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103987 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse multicritère
[Termes IGN] appariement de cartes
[Termes IGN] distribution spatiale
[Termes IGN] réseau routier
[Termes IGN] segment de droite
[Termes IGN] station
[Termes IGN] véhicule électrique
[Termes IGN] zone urbaineRésumé : (auteur) This paper proposes a method for electric vehicle charging station (EVCS) placement problem at the directional road segment (DRS) level for large urban road networks, which integrates a multi-criteria decision-making model with a new map matching technique called “segment-wise matching based on MRI”. The charging demand of DRS is estimated based on a novel prediction method which considers the arrival trips and the variation of charging demand for different trip purposes. Traffic attributes, charging demand attributes, and land price are incorporated into the TOPSIS model to determine the optimal EVCS placement. Finally, the proposed method is demonstrated using the road network of Xi'an in China as a case study. The results show the proposed method can be well applied to the EVCS placement problem at the DRS level for large-scale urban road networks. It is found that EVCS installation potentials of road segments approximately follow a normal distribution. The road segments with a high installation potential exhibit regional clustering characteristics due to the level of well-developed land use in the surrounding area. Sensitivity analyses suggest that it is important to include multiple criteria for modeling the EVCS placement problem and that traffic speed and arrival trips are key factors. Numéro de notice : A2022-545 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.103987 Date de publication en ligne : 04/06/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103987 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101119
in Sustainable Cities and Society > vol 84 (September 2022) . - n° 103987[article]Evaluation of the GSRM2.1 and the NUVEL1-A values in Europe using SLR and VLBI based geodetic velocity fields / Mina Rahmani in Survey review, vol 54 n° 385 (July 2022)
PermalinkGlobal forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis / Jinpei Chen in GPS solutions, vol 26 n° 3 (July 2022)
PermalinkHuman cognition based framework for detecting roads from remote sensing images / Naveen Chandra in Geocarto international, vol 37 n° 8 ([22/06/2022])
PermalinkProduction of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey / Faruk Yildirim in Geocarto international, vol 37 n° 8 ([22/06/2022])
PermalinkAssessment of land suitability potentials for winter wheat cultivation by using a multi criteria decision Support-Geographic information system (MCDS-GIS) approach in Al-Yarmouk Basin (Syria) / Safwan Mohammed in Geocarto international, vol 37 n° 6 (June 2022)
PermalinkCombination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)
PermalinkOn the consistency of coastal sea-level measurements in the Mediterranean Sea from tide gauges and satellite radar altimetry / Sara Bruni in Journal of geodesy, vol 96 n° 6 (June 2022)
PermalinkDendroclimatological analysis of fir (A. borisii-regis) in Greece in the frame of climate change investigation / Aristeidis Kastridis in Forests, vol 13 n° 6 (June 2022)
PermalinkExploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)
PermalinkGIS and machine learning for analysing influencing factors of bushfires using 40-year spatio-temporal bushfire data / Wanqin He in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
Permalink