Descripteur
Documents disponibles dans cette catégorie (2811)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)
[article]
Titre : Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach Type de document : Article/Communication Auteurs : Hakan Oktay Aydınlı, Auteur ; Ali Ekincek, Auteur ; Mervegül Aykanat-Atay, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 669 - 678 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] détection de changement
[Termes IGN] données Copernicus
[Termes IGN] image Aqua-MODIS
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle de simulation
[Termes IGN] Noire, mer
[Termes IGN] optimisation (mathématiques)
[Termes IGN] série temporelle
[Termes IGN] température de surface de la merRésumé : (auteur) High temporal resolution remote sensing images provide continuous data about the marine environment, which is critical for gaining extensive knowledge about the aquatic environment and marine species. Sea surface temperature (SST) is one of the basic parameters that can be obtained with the help of remote sensing. Long-term alterations in the SST can affect the aquatic environment and marine species, such as the life expectancy of anchovies in the Black Sea. Forecasting the dynamics of SSTs is crucial for detecting and eliminating the SST-oriented impacts. The goal of the current study is to construct a predictive model to estimate the daily SST value for the mid-Black Sea using a machine learning approach by employing time-series satellite data from 2008 to 2021. Turkey’s mid-Black Sea coastal line, comprising Ordu, Samsun, and Sinop stations, was chosen as the study area. The SST predictive model was represented by applying the recurrent neural network (RNN) long- and short-term memory (LSTM). Adam stochastic optimization was used for validation, and the mean square error (MSE) for each location was found to be 0.914, 0.815, and 0.802, respectively. The findings indicate that our model is significantly promising for accurate and effective short- and midterm daily SST prediction. Numéro de notice : A2022-894 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-022-00462-y Date de publication en ligne : 23/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00462-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102242
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 669 - 678[article]The simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
[article]
Titre : The simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore Type de document : Article/Communication Auteurs : Muhammad Nasar Ahmad, Auteur ; Shao Zhengfeng, Auteur ; Andaleeb Yaseen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 783 - 790 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification par réseau neuronal
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] MNS SRTM
[Termes IGN] modèle de simulation
[Termes IGN] Pakistan
[Termes IGN] planification urbaine
[Termes IGN] température au solRésumé : (auteur) Over the last two decades, urban growth has become a major issue in Lahore, accelerating land surface temperature (LST) rise. The present study focused on estimating the current situation and simulating the future LST patterns in Lahore using remote sensing data and machine learning models. The semi-automated classification model was applied for the estimation of LST from 2000 to 2020. Then, the cellular automata-artificial neural networks (CA-ANN) module was implemented to predict future LST patterns for 2030 and 2040, respectively. Our research findings revealed that an average of 2.8 °C of land surface temperature has increased, with a mean LST value from 37.25 °C to 40.10 °C in Lahore during the last two decades from 2000 to 2020. Moreover, keeping CA-ANN simulations for land surface temperature, an increase of 2.2 °C is projected through 2040, and mean LST values will be increased from 40.1 °C to 42.31 °C by 2040. The CA-ANN model was validated for future LST simulation with an overall Kappa value of 0.82 and 86.2% of correctness for the years 2030 and 2040 using modules for land-use change evaluation. The study also indicates that land surface temperature is an important factor in environmental changes. Therefore, it is suggested that future urban planning should focus on urban rooftop plantations and vegetation conservation to minimize land surface temperature increases in Lahore. Numéro de notice : A2022-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00071R2 Date de publication en ligne : 01/12/2022 En ligne : https://doi.org/10.14358/PERS.22-00071R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102208
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 12 (December 2022) . - pp 783 - 790[article]Development and long-term dynamics of old-growth beech-fir forests in the Pyrenees: Evidence from dendroecology and dynamic vegetation modelling / Dario Martín-Benito in Forest ecology and management, vol 524 (November-15 2022)
[article]
Titre : Development and long-term dynamics of old-growth beech-fir forests in the Pyrenees: Evidence from dendroecology and dynamic vegetation modelling Type de document : Article/Communication Auteurs : Dario Martín-Benito, Auteur ; Juan Alberto Molina-Valero, Auteur ; César Pérez-Cruzado, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120541 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] analyse diachronique
[Termes IGN] biomasse forestière
[Termes IGN] dendroécologie
[Termes IGN] dynamique de la végétation
[Termes IGN] Espagne
[Termes IGN] exploitation forestière
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt ancienne
[Termes IGN] forêt tempérée
[Termes IGN] modèle de croissance végétale
[Termes IGN] ombre
[Termes IGN] perturbation écologique
[Termes IGN] Pyrénées (montagne)
[Vedettes matières IGN] ForesterieRésumé : (auteur) Ecological knowledge on long-term forest dynamics and development has been primarily derived from the study of old-growth forests. Centuries of forest management have decreased the extent of temperate old-growth forests in Europe and altered managed forests. Disentangling the effects of past human disturbances and climate on current species composition is crucial for understanding the long-term development of forests under global change. In this study, we investigated disturbance and recruitment dynamics in two forests in the Western Pyrenees (Spain) with contrasting management history: an old-growth forest and a long-untouched forest, both dominated by the two shade-tolerant species Fagus sylvatica (European beech) and Abies alba (Silver fir). We used dendroecological methods in seven plots to analyse forest structure, growth patterns and disturbance histories in these forests. We benchmarked these data with the dynamic vegetation model ForClim to examine the effects of natural and human-induced disturbances on forest development, structure and species composition. Disturbance regimes differed between the study forests, but none showed evidence of stand replacing disturbances, either natural or human induced. Low disturbance rates and continuous recruitment of beech and fir dominated the old-growth forest over the last 400 years. In contrast, the long-untouched forest was intensively disturbed in 1700–1780, probably by logging, with lower natural disturbance rates thereafter. Beech and fir recruitment preferentially occurred after more intense disturbances, despite the high shade tolerance of both beech and fir. Higher fir abundance in the long-untouched forest than in the old-growth forest appeared to be related to its human-induced disturbances. ForClim closely simulated forest potential natural vegetation with a dominance of beech over fir, but overestimated the presence of less shade-tolerant species. Previously observed local fir decline may result from natural forest successional processes after logging. Within ∼200 years after logging cessation, some long-untouched forest structural attributes converged towards old-growth forest, but legacy effects still affected species composition and structure. Natural disturbance regimes in beech-fir forests of the Western Pyrenees induce temporal fluctuations between beech and fir abundance, with a natural tendency for beech dominance in advanced developmental stages with low disturbance rates. Numéro de notice : A2022-732 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1016/j.foreco.2022.120541 Date de publication en ligne : 23/09/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120541 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101695
in Forest ecology and management > vol 524 (November-15 2022) . - n° 120541[article]Vine canopy reconstruction and assessment with terrestrial Lidar and aerial imaging / Igor Petrovic in Remote sensing, vol 14 n° 22 (November-2 2022)
[article]
Titre : Vine canopy reconstruction and assessment with terrestrial Lidar and aerial imaging Type de document : Article/Communication Auteurs : Igor Petrovic, Auteur ; Matej Sečnik, Auteur ; Marko Hočevar, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5894 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] analyse comparative
[Termes IGN] couvert végétal
[Termes IGN] défoliation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage de données
[Termes IGN] épandage
[Termes IGN] lasergrammétrie
[Termes IGN] pas d'échantillonnage au sol
[Termes IGN] photogrammétrie aérienne
[Termes IGN] Slovénie
[Termes IGN] viticultureRésumé : (auteur) For successful dosing of plant protection products, the characteristics of the vine canopies should be known, based on which the spray amount should be dosed. In the field experiment, we compared two optical experimental methods, terrestrial lidar and aerial photogrammetry, with manual defoliation of some selected vines. Like those of other authors, our results show that both terrestrial lidar and aerial photogrammetry were able to represent the canopy well with correlation coefficients around 0.9 between the measured variables and the number of leaves. We found that in the case of aerial photogrammetry, significantly more points were found in the point cloud, but this depended on the choice of the ground sampling distance. Our results show that in the case of aerial UAS photogrammetry, subdividing the vine canopy segments to 5 × 5 cm gives the best representation of the volume of vine canopies. Numéro de notice : A2022-881 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14225894 Date de publication en ligne : 21/11/2022 En ligne : https://doi.org/10.3390/rs14225894 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102203
in Remote sensing > vol 14 n° 22 (November-2 2022) . - n° 5894[article]Automatic vectorization of fluvial corridor features on historical maps to assess riverscape changes / Samuel Dunesme in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)
[article]
Titre : Automatic vectorization of fluvial corridor features on historical maps to assess riverscape changes Type de document : Article/Communication Auteurs : Samuel Dunesme , Auteur ; Hervé Piegay, Auteur ; Sébastien Mustière , Auteur Année de publication : 2022 Projets : EUR H20'Lyon / Article en page(s) : pp 512 - 527 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] automatisation
[Termes IGN] carte ancienne
[Termes IGN] couleur (rédaction cartographique)
[Termes IGN] cours d'eau
[Termes IGN] détection de changement
[Termes IGN] Institut national de l'information géographique et forestière (France)
[Termes IGN] réseau fluvial
[Termes IGN] réseau hydrographique
[Termes IGN] vectorisationRésumé : (auteur) The vectorization of historical maps is an important scientific issue for understanding the dynamics of change recorded by territories. Historical maps are potentially an excellent source of data for characterizing river changes at large scales. The use of vectorized data is essential for such characterization, as well as for highlighting changes in the planform alignment of such reaches over time. At a regional network scale of several thousand kilometers of river, such work requires the vectorization of several hundred or even thousands of maps. This work proposes an automated vectorization procedure for the hydrographic network detailed in the cartographic resources of the IGN (the French National Mapping Agency). The ultimate goal is to use these historical maps to track the planform evolution of the elementary landscape units (water, bare banks, and riparian vegetation) that constitute river corridors at the basin network scale. The Historical Maps Vectorization Toolbox was developed to automatically vectorize river corridor objects (sediment banks, water surfaces, and vegetation polygons) with a high level of accuracy. The toolbox works with a 2-step process: first it classifies the colors detected on the map, then it reconstructs the objects of the fluvial corridor. We also demonstrate a practical use of the toolbox through measuring changes in the surface area of river networks of several hundred kilometers. Numéro de notice : A2022-604 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2091661 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.1080/15230406.2022.2091661 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102073
in Cartography and Geographic Information Science > vol 49 n° 6 (November 2022) . - pp 512 - 527[article]A fast satellite selection algorithm for multi-GNSS marine positioning based on improved particle swarm optimisation / Xiaoguo Guan in Survey review, vol 54 n° 387 (November 2022)PermalinkFeatures predisposing forest to bark beetle outbreaks and their dynamics during drought / M. Müller in Forest ecology and management, vol 523 (November-1 2022)PermalinkA robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) / Anchal Kumawat in The Visual Computer, vol 38 n° 11 (November 2022)PermalinkModelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach / Abebe Debele Tolche in Geocarto international, vol 37 n° 24 ([20/10/2022])PermalinkComparison of change and static state as the dependent variable for modeling urban growth / Yongjiu Feng in Geocarto international, vol 37 n° 23 ([15/10/2022])PermalinkGIS and MCDMA prioritization based modeling for sub-watershed in Bastora river basin / Raid Mahmood Faisal in Geocarto international, vol 37 n° 23 ([15/10/2022])PermalinkModelling the future vulnerability of urban green space for priority-based management and green prosperity strategy planning in Kolkata, India: a PSR-based analysis using AHP-FCE and ANN-Markov model / Santanu Dinda in Geocarto international, vol 37 n° 22 ([10/10/2022])PermalinkComparison of layer-stacking and Dempster-Shafer theory-based methods using Sentinel-1 and Sentinel-2 data fusion in urban land cover mapping / Dang Hung Bui in Geo-spatial Information Science, vol 25 n° 3 (October 2022)PermalinkA determination of the motion based on GNSS observations between 2000 and 2021 using the IGS points in the polar regions / Atinç Pirti in Geodesy and cartography, vol 48 n° 3 (October 2022)PermalinkGNSS best integer equivariant estimation combining with integer least squares estimation: an integrated ambiguity resolution method with optimal integer aperture test / Liye Ma in GPS solutions, vol 26 n° 4 (October 2022)Permalink