Descripteur
Documents disponibles dans cette catégorie (54)



Etendre la recherche sur niveau(x) vers le bas
Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
![]()
[article]
Titre : Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density Type de document : Article/Communication Auteurs : Luyen K. Bui, Auteur ; Craig L. Glennie, Auteur Année de publication : 2023 Article en page(s) : n° 100028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Hawaii (Etats-Unis)
[Termes IGN] incertitude des données
[Termes IGN] interpolation
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Light detection and ranging (lidar) scanning systems can be used to provide a point cloud with high quality and point density. Gridded digital elevation models (DEMs) interpolated from laser scanning point clouds are widely used due to their convenience, however, DEM uncertainty is rarely provided. This paper proposes an end-to-end workflow to quantify the uncertainty (i.e., standard deviation) of a gridded lidar-derived DEM. A benefit of the proposed approach is that it does not require independent validation data measured by alternative means. The input point cloud requires per point uncertainty which is derived from lidar system observational uncertainty. The propagated uncertainty caused by interpolation is then derived by the general law of propagation of variances (GLOPOV) with simultaneous consideration of both horizontal and vertical point cloud uncertainties. Finally, the interpolated uncertainty is then scaled by point density and a measure of terrain roughness to arrive at the final gridded DEM uncertainty. The proposed approach is tested with two lidar datasets measured in Waikoloa, Hawaii, and Sitka, Alaska. Triangulated irregular network (TIN) interpolation is chosen as the representative gridding approach. The results indicate estimated terrain roughness/point density scale factors ranging between 1 (in flat areas) and 7.6 (in high roughness areas), with a mean value of 2.3 for the Waikoloa dataset and between 1 and 9.2 with a mean value of 1.2 for the Sitka dataset. As a result, the final gridded DEM uncertainties are estimated between 0.059 m and 0.677 m with a mean value of 0.164 m for the Waikoloa dataset and between 0.059 m and 1.723 m with a mean value of 0.097 m for the Sitka dataset. Numéro de notice : A2023-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100028 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.1016/j.ophoto.2022.100028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102494
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 7 (January 2023) . - n° 100028[article]Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska / Jiang Chen in Geocarto international, vol 37 n° 20 ([20/09/2022])
![]()
[article]
Titre : Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska Type de document : Article/Communication Auteurs : Jiang Chen, Auteur ; Weining Zhu, Auteur Année de publication : 2022 Article en page(s) : pp 6052 - 6071 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse comparative
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat-8
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] latitude
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] observation de la Terre
[Termes IGN] réflectance de surfaceRésumé : (auteur) Combining Landsat-8 and Sentinel-2 images is an effective approach to obtain high spatiotemporal resolution data for Earth observation and remote sensing modeling. The differences between Landsat-8 and Sentinel-2 products, such as the reflectance at the top of atmosphere (TOA) and land surface, should be compared and evaluated to make sure they are spectrally consistent. Their consistency has been evaluated and the differences have been empirically corrected at mid-low latitudes, but in high latitude areas with a higher solar zenith angle (SZA), the similar work has not been explored. In this study, Landsat-8 and Sentinel-2 TOA and surface reflectance in Alaska as well as some surface parameters, such as the normalized difference vegetation index (NDVI) and normalized difference snow index (NDSI), were compared using the massive data distributed on Google earth engine (GEE) online platform, and their consistency was evaluated and the uncertainty was analyzed. Some empirical models were suggested to convert Sentinel-2 products to be consistent with Landsat-8 products at all bands. The results show that TOA reflectance is more consistent than surface reflectance in Alaska. This study suggests that the consistency between Landsat-8 and Sentinel-2 at high latitudes should be paid more attention because their consistency is lower than that at mid-low latitudes. Numéro de notice : A2022-717 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1924295 Date de publication en ligne : 17/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1924295 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101642
in Geocarto international > vol 37 n° 20 [20/09/2022] . - pp 6052 - 6071[article]Ground surface elevation changes over permafrost areas revealed by multiple GNSS interferometric reflectometry / Yufeng Hu in Journal of geodesy, vol 96 n° 8 (August 2022)
![]()
[article]
Titre : Ground surface elevation changes over permafrost areas revealed by multiple GNSS interferometric reflectometry Type de document : Article/Communication Auteurs : Yufeng Hu, Auteur ; Ji Wang, Auteur ; Zhenhong Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 56 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse diachronique
[Termes IGN] dégel
[Termes IGN] données Galileo
[Termes IGN] données GLONASS
[Termes IGN] pergélisol
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflecteur
[Termes IGN] réflectométrie par GNSS
[Termes IGN] signal GNSS
[Termes IGN] surface du sol
[Termes IGN] variation saisonnièreRésumé : (auteur) Ground subsidence and uplift caused by the annual thawing and freezing of the active layer are important variables in permafrost studies. Global positioning system interferometric reflectometry (GPS-IR) has been successfully applied to retrieve the continuous ground surface movements in permafrost areas. However, only GPS signals were used in previous studies. In this study, using multiple global navigation satellite system (GNSS) signal-to-noise ratio (SNR) observations recorded by a GNSS station SG27 in Utqiaġvik, Alaska during the period from 2018 to 2021, we applied multiple GNSS-IR (multi-GNSS-IR) technique to the SNR data and obtained the complete and continuous ground surface elevation changes over the permafrost area at a daily interval in snow-free seasons in 2018 and 2019. The GLONASS-IR and Galileo-IR measurements agreed with the GPS-IR measurements at L1 frequency, which are the most consistent measurements among all multi-GNSS measurements, in terms of the overall subsidence trend but clearly showed periodic noises. We proposed a method to reconstruct the GLONASS- and Galileo-IR elevation changes by specifically grouping and fitting them with a composite model. Compared with GPS L1 results, the unbiased root mean square error (RMSE) of the reconstructed Galileo measurements reduced by 50.0% and 42.2% in 2018 and 2019, respectively, while the unbiased RMSE of the reconstructed GLONASS measurements decreased by 41.8% and 25.8% in 2018 and 2019, respectively. Fitting the composite model to the combined multi-GNSS-IR, we obtained seasonal displacements of − 3.27 ± 0.13 cm (R2 = 0.763) and − 10.56 ± 0.10 cm (R2 = 0.912) in 2018 and 2019, respectively. Moreover, we found that the abnormal summer heave was strongly correlated with rain events, implying hydrological effects on the ground surface elevation changes. Our study shows the feasibility of multi-GNSS-IR in permafrost areas for the first time. Multi-GNSS-IR opens up a great opportunity for us to investigate ground surface movements over permafrost areas with multi-source observations, which are important for our robust analysis and quantitative understanding of frozen ground dynamics under climate change. Numéro de notice : A2022-606 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01646-5 Date de publication en ligne : 13/08/2022 En ligne : https://doi.org/10.1007/s00190-022-01646-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101385
in Journal of geodesy > vol 96 n° 8 (August 2022) . - n° 56[article]Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs / Ann E. Gibbs in Remote sensing, vol 13 n° 21 (November-1 2021)
![]()
[article]
Titre : Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs Type de document : Article/Communication Auteurs : Ann E. Gibbs, Auteur ; Li H. Erikson, Auteur ; Benjamin M. Jones, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4420 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse diachronique
[Termes IGN] Beaufort, mer de
[Termes IGN] détection de changement
[Termes IGN] données météorologiques
[Termes IGN] ERA5
[Termes IGN] érosion côtière
[Termes IGN] modèle météorologique
[Termes IGN] pergélisol
[Termes IGN] série temporelle
[Termes IGN] température de l'air
[Termes IGN] température de surface de la mer
[Termes IGN] trait de côte
[Termes IGN] vagueRésumé : (auteur) Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steady increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea. Numéro de notice : A2021-822 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13214420 Date de publication en ligne : 04/11/2021 En ligne : https://doi.org/10.3390/rs13214420 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98936
in Remote sensing > vol 13 n° 21 (November-1 2021) . - n° 4420[article]Using LiDAR and Random Forest to improve deer habitat models in a managed forest landscape / Colin S. Shanley in Forest ecology and management, vol 499 (November-1 2021)
![]()
[article]
Titre : Using LiDAR and Random Forest to improve deer habitat models in a managed forest landscape Type de document : Article/Communication Auteurs : Colin S. Shanley, Auteur ; Daniel R. Eacker, Auteur ; Connor P. Reynolds, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119580 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] Cervidae
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] coefficient de corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] géomorphométrie
[Termes IGN] habitat animal
[Termes IGN] habitat forestier
[Termes IGN] semis de pointsRésumé : (auteur) Conservation strategies are hindered by a lack of accurate maps of important habitat for many wildlife species, but especially for species inhabiting managed forest landscapes. Prioritizing restoration efforts on Alaska’s Tongass National Forest from past extensive clearcut logging is extremely challenging given the difficulty in accurately mapping its remote, rugged temperate rainforest landscapes. We tested the application of airborne light detection and ranging (LiDAR) technology to build a winter habitat model for Sitka black-tailed deer (Odocoileus hemionus sitkensis), the primary herbivore in the coastal temperate rainforest. We analyzed the importance of geomorphometric and forest structure characteristics as predictors of deer winter habitat selection using Random Forest applied to a 3-year GPS relocation dataset collected from 40 adult female deer. The LiDAR-based habitat model had a predictive performance of 94% (Out-of-bag error = 6%), a 10% lower model error compared to air-photo interpreted polygons and modeled plot data. Random Forest also outperformed analogous resource selection function models based on a comprehensive k-fold cross-validation. Deer habitat selection patterns in the LiDAR-based model were nonlinear across geomorphometric and forest structure predictive variables, and generally supported existing studies of deer habitat selection. Besides improving deer conservation and management on the Tongass National Forest, our approach could greatly enhance the accuracy and resolution of habitat maps used for conservation and restoration planning across large managed forest landscapes. Numéro de notice : A2021-696 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119580 Date de publication en ligne : 26/08/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119580 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98529
in Forest ecology and management > vol 499 (November-1 2021) . - n° 119580[article]Shore zone classification from ICESat-2 data over Saint Lawrence Island / Huan Xie in Marine geodesy, vol 44 n° 5 (September 2021)
PermalinkIonospheric irregularity layer height and thickness estimation with a GNSS receiver array / Seebany Datta-Barua in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
PermalinkA novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (May 2021)
PermalinkA systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems / Dong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkCo-seismic displacement and waveforms of the 2018 Alaska earthquake from high-rate GPS PPP velocity estimation / Shuanggen Jin in Journal of geodesy, vol 93 n° 9 (September 2019)
PermalinkCombining potentially incompatible community datasets when harmonizing forest inventories in subarctic Alaska, USA / Robert J. Smith in Journal of vegetation science, vol 30 n° 1 (January 2019)
PermalinkPermalinkIntegrating SAR and derived products into operational volcano monitoring and decision support systems / Franz J. Meyer in ISPRS Journal of photogrammetry and remote sensing, vol 100 (February 2015)
PermalinkIllustrating the temporal progress of environmental change / Joann W. Harvey in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 12 (December 2013)
PermalinkLandscape controls over major nutrients and primary productivity of Arctic lakes / P. Pathak in Cartography and Geographic Information Science, vol 39 n° 4 (October 2012)
Permalink