Descripteur
Documents disponibles dans cette catégorie (54)



Etendre la recherche sur niveau(x) vers le bas
Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs / Ann E. Gibbs in Remote sensing, vol 13 n° 21 (November-1 2021)
![]()
[article]
Titre : Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs Type de document : Article/Communication Auteurs : Ann E. Gibbs, Auteur ; Li H. Erikson, Auteur ; Benjamin M. Jones, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4420 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse diachronique
[Termes IGN] Beaufort, mer de
[Termes IGN] détection de changement
[Termes IGN] données météorologiques
[Termes IGN] ERA5
[Termes IGN] érosion côtière
[Termes IGN] modèle météorologique
[Termes IGN] pergélisol
[Termes IGN] série temporelle
[Termes IGN] température de l'air
[Termes IGN] température de surface de la mer
[Termes IGN] trait de côte
[Termes IGN] vagueRésumé : (auteur) Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steady increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea. Numéro de notice : A2021-822 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13214420 Date de publication en ligne : 04/11/2021 En ligne : https://doi.org/10.3390/rs13214420 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98936
in Remote sensing > vol 13 n° 21 (November-1 2021) . - n° 4420[article]Using LiDAR and Random Forest to improve deer habitat models in a managed forest landscape / Colin S. Shanley in Forest ecology and management, vol 499 (1 November 2021)
![]()
[article]
Titre : Using LiDAR and Random Forest to improve deer habitat models in a managed forest landscape Type de document : Article/Communication Auteurs : Colin S. Shanley, Auteur ; Daniel R. Eacker, Auteur ; Connor P. Reynolds, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119580 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] Cervidae
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] coefficient de corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] géomorphométrie
[Termes IGN] habitat animal
[Termes IGN] habitat forestier
[Termes IGN] paysage forestier
[Termes IGN] semis de pointsRésumé : (auteur) Conservation strategies are hindered by a lack of accurate maps of important habitat for many wildlife species, but especially for species inhabiting managed forest landscapes. Prioritizing restoration efforts on Alaska’s Tongass National Forest from past extensive clearcut logging is extremely challenging given the difficulty in accurately mapping its remote, rugged temperate rainforest landscapes. We tested the application of airborne light detection and ranging (LiDAR) technology to build a winter habitat model for Sitka black-tailed deer (Odocoileus hemionus sitkensis), the primary herbivore in the coastal temperate rainforest. We analyzed the importance of geomorphometric and forest structure characteristics as predictors of deer winter habitat selection using Random Forest applied to a 3-year GPS relocation dataset collected from 40 adult female deer. The LiDAR-based habitat model had a predictive performance of 94% (Out-of-bag error = 6%), a 10% lower model error compared to air-photo interpreted polygons and modeled plot data. Random Forest also outperformed analogous resource selection function models based on a comprehensive k-fold cross-validation. Deer habitat selection patterns in the LiDAR-based model were nonlinear across geomorphometric and forest structure predictive variables, and generally supported existing studies of deer habitat selection. Besides improving deer conservation and management on the Tongass National Forest, our approach could greatly enhance the accuracy and resolution of habitat maps used for conservation and restoration planning across large managed forest landscapes. Numéro de notice : A2021-696 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119580 Date de publication en ligne : 26/08/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119580 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98529
in Forest ecology and management > vol 499 (1 November 2021) . - n° 119580[article]Shore zone classification from ICESat-2 data over Saint Lawrence Island / Huan Xie in Marine geodesy, vol 44 n° 5 (September 2021)
![]()
[article]
Titre : Shore zone classification from ICESat-2 data over Saint Lawrence Island Type de document : Article/Communication Auteurs : Huan Xie, Auteur ; Yuan Sun, Auteur ; Xiaoshuai Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 454 - 466 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] Bering, mer de
[Termes IGN] données ICEsat
[Termes IGN] Google Earth
[Termes IGN] indicateur environnemental
[Termes IGN] littoral
[Termes IGN] modèle de régression
[Termes IGN] photon
[Termes IGN] sédimentRésumé : (Auteur) The shore zone is the most active zone in the atmosphere, hydrosphere, biosphere and lithosphere of nature, and has the environmental characteristics of both ocean and land. The ICESat-2 satellite provides height measurements of shore zone using a photon-counting LiDAR. The purpose of this study is to explore the application potential of ICESat-2 satellite data in shore zone classification. Saint Lawrence Island, Alaska, was chosen as the study area. Firstly, in this study, the upper and lower boundaries of the shore zone of the study area were extracted based on Google Earth images. The slope and width between the two boundaries were then calculated according to the formula. Secondly, six statistical indicators (standard deviation, relative standard deviation, average absolute deviation, relative average deviation, absolute median error and quartile deviation) related to the substrate and sediment classification that could reflect the characteristics of the shore zone profile were extracted, and the statistical indicators were used as input parameters of the softmax regression model for classification. Finally, the accuracy of the shore zone classification was validated using the ShoreZone classification system. The results show that, among the 246 shore zone sections in the study area, 86% (212) has been correctly classified. The results therefore indicate that ICESat-2 data can be used to support the characterization of shore zone morphology. Numéro de notice : A2021-578 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01490419.2021.1898498 Date de publication en ligne : 29/03/2021 En ligne : https://doi.org/10.1080/01490419.2021.1898498 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98234
in Marine geodesy > vol 44 n° 5 (September 2021) . - pp 454 - 466[article]Ionospheric irregularity layer height and thickness estimation with a GNSS receiver array / Seebany Datta-Barua in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
![]()
[article]
Titre : Ionospheric irregularity layer height and thickness estimation with a GNSS receiver array Type de document : Article/Communication Auteurs : Seebany Datta-Barua, Auteur ; Yang Su, Auteur ; Aurora López Rubio, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6198 - 6207 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] hauteur de la couche ionosphérique
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle ionosphérique
[Termes IGN] phase GNSS
[Termes IGN] rapport signal sur bruit
[Termes IGN] scintillation
[Termes IGN] série temporelle
[Termes IGN] signal GNSSRésumé : (auteur) This work develops a method by which a kilometer-spaced array of Global Navigation Satellite System (GNSS) scintillation receivers can be used to estimate the ionospheric irregularity layer height and thickness and associated uncertainties on those estimates. Spectra of filtered signal power and phase data are used to estimate these quantities by comparing the observed ratio of the log of the power spectrum to the phase spectrum with the Rytov weak scatter theoretical ratio. A Monte Carlo simulation of noise on the input signal and the irregularity drift velocity is used to quantify the error in estimates of height and thickness. The method is tested using data from the Scintillation Auroral Global Positioning System (GPS) Array (SAGA) sited in the auroral zone at Poker Flat Research Range, Alaska. For the 30-min scintillation period studied, the technique identifies ionospheric scattering from a thick F layer, which correlates well with on-site incoherent scatter radar measurements of peak electron density, for an event previously identified in the literature as likely due to F layer. Numéro de notice : A2021-539 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1109/TGRS.2020.3024173 Date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3024173 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98013
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 6198 - 6207[article]A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (May 2021)
![]()
[article]
Titre : A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm Type de document : Article/Communication Auteurs : Sara Khanbani, Auteur ; Ali Mohammadzadeh, Auteur ; Milad Janalipour, Auteur Année de publication : 2021 Article en page(s) : pp 89 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] algorithme génétique
[Termes IGN] changement temporel
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] coût
[Termes IGN] détection de changement
[Termes IGN] seuillageRésumé : (auteur) Change Detection (CD) problem from remotely sensed images is a popular topic among researchers. Because of the diversity in the problem of change detection and the complexity of the study areas it cannot be claimed that there is an appropriate and prevalent algorithm which is more effective for different types of the case study. As a fundamental investigation, it is critical to recognize the weaknesses of the state of artworks in change detection. Also, those examined weaknesses have to be improved aptly to develop a new strong method. This paper presents a thresholding algorithm improved by the Genetic Algorithm (GA) in CD problems, which focuses on minimizing a novel cost function. The suggested cost function can be adopted for local and global change variations in difference images without any prior assumptions. The presented algorithm was tested on two data sets (i.e., Alaska region and Uremia Lake) to validate its effectiveness. Experimental results demonstrated that the proposed algorithm in this work has improved the accuracy of change detection (changed pixel accuracy term) in the Alaska region about 8%–12% and also in Uremia Lake approximately between 8%–13% in comparison with other conventional methods including Fuzzy C- Means (FCM), Otsu thresholding, K-Means, and K-Medoid. Numéro de notice : A2021-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00323-6 Date de publication en ligne : 22/06/2020 En ligne : https://doi.org/10.1007/s12518-020-00323-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97246
in Applied geomatics > vol 13 n° 1 (May 2021) . - pp 89 - 105[article]A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems / Dong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkCo-seismic displacement and waveforms of the 2018 Alaska earthquake from high-rate GPS PPP velocity estimation / Shuanggen Jin in Journal of geodesy, vol 93 n° 9 (September 2019)
PermalinkCombining potentially incompatible community datasets when harmonizing forest inventories in subarctic Alaska, USA / Robert J. Smith in Journal of vegetation science, vol 30 n° 1 (January 2019)
PermalinkPermalinkIntegrating SAR and derived products into operational volcano monitoring and decision support systems / Franz J. Meyer in ISPRS Journal of photogrammetry and remote sensing, vol 100 (February 2015)
PermalinkIllustrating the temporal progress of environmental change / Joann W. Harvey in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 12 (December 2013)
PermalinkLandscape controls over major nutrients and primary productivity of Arctic lakes / P. Pathak in Cartography and Geographic Information Science, vol 39 n° 4 (October 2012)
PermalinkProducing an indigenous knowledge Web GIS for Arctic Alaska communities: Challenges, successes, and lessons learned / W. Eisner in Transactions in GIS, vol 16 n° 1 (February 2012)
PermalinkMapping vegetated wetlands of Alaska using L-band radar satellite imagery / Jane Whitcomb in Canadian journal of remote sensing, vol 35 n° 1 (February 2009)
PermalinkDEM control in Arctic Alaska with Icesat laser altimetry / D.K. Atwood in IEEE Transactions on geoscience and remote sensing, vol 45 n° 11 Tome 2 (November 2007)
Permalink