Descripteur
Termes IGN > mathématiques > analyse numérique
analyse numériqueSynonyme(s)calcul numerique |
Documents disponibles dans cette catégorie (1866)


Etendre la recherche sur niveau(x) vers le bas
Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Zhengdong Huang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de trafic
[Termes IGN] graphe
[Termes IGN] logement
[Termes IGN] migration pendulaire
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] service public
[Termes IGN] Shenzhen
[Termes IGN] système de transport intelligent
[Termes IGN] transport public
[Termes IGN] transport urbainRésumé : (auteur) Accurate and robust short-term bus travel prediction facilitates operating the bus fleet to provide comfortable and flexible bus services. The built environment, including land use, buildings, and public facilities, has an important influence on bus travel demand prediction. However, previous studies regarded the built environment as a static feature thus even ignored its influence on bus travel in deep learning framework. To fill this gap, we propose a graph deep learning-based approach coupling with spatiotemporal influence of built environment (GDLBE) to enhance short-term bus travel demand prediction. A time-dependent geographically weighted regression method is used to resolve the dynamic influence of the built environment on bus travel demand at different times of the day. A graph deep learning module is used to capture the comprehensive spatial and temporal dependency behind massive bus travel demand. The short-term bus travel demand is predicted by fusing the dynamic built environment influences and spatiotemporal dependency. An experiment in Shenzhen is conducted to evaluate the performance of the proposed approach. Baseline methods are compared, and the results demonstrate that the proposed approach outperforms the baselines. These results will help bus fleet dispatch for smart transportation. Numéro de notice : A2022-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101776 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100185
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101776[article]DiffusionNet: discretization agnostic learning on surfaces / Nicholas Sharp in ACM Transactions on Graphics, TOG, Vol 41 n° 3 (June 2022)
![]()
[article]
Titre : DiffusionNet: discretization agnostic learning on surfaces Type de document : Article/Communication Auteurs : Nicholas Sharp, Auteur ; Souhaib Attaiki, Auteur ; K. Crane, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] discrétisation
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] Triangular Regular Network
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) We introduce a new general-purpose approach to deep learning on three-dimensional surfaces based on the insight that a simple diffusion layer is highly effective for spatial communication. The resulting networks are automatically robust to changes in resolution and sampling of a surface—a basic property that is crucial for practical applications. Our networks can be discretized on various geometric representations, such as triangle meshes or point clouds, and can even be trained on one representation and then applied to another. We optimize the spatial support of diffusion as a continuous network parameter ranging from purely local to totally global, removing the burden of manually choosing neighborhood sizes. The only other ingredients in the method are a multi-layer perceptron applied independently at each point and spatial gradient features to support directional filters. The resulting networks are simple, robust, and efficient. Here, we focus primarily on triangle mesh surfaces and demonstrate state-of-the-art results for a variety of tasks, including surface classification, segmentation, and non-rigid correspondence. Numéro de notice : A2022-321 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1145/3507905 Date de publication en ligne : 07/03/2022 En ligne : https://doi.org/10.1145/3507905 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100369
in ACM Transactions on Graphics, TOG > Vol 41 n° 3 (June 2022) . - pp 1 - 16[article]Multi-objective optimization of urban environmental system design using machine learning / Peiyuan Li in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Multi-objective optimization of urban environmental system design using machine learning Type de document : Article/Communication Auteurs : Peiyuan Li, Auteur ; Tianfang Xu, Auteur ; Shiqi Wei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101796 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme génétique
[Termes IGN] apprentissage automatique
[Termes IGN] dioxyde de carbone
[Termes IGN] ilot thermique urbain
[Termes IGN] indicateur environnemental
[Termes IGN] milieu urbain
[Termes IGN] optimisation (mathématiques)
[Termes IGN] planification urbaine
[Termes IGN] processus gaussien
[Termes IGN] régression
[Termes IGN] végétationRésumé : (auteur) The efficacy of urban mitigation strategies for heat and carbon emissions relies heavily on local urban characteristics. The continuous development and improvement of urban land surface models enable rather accurate assessment of the environmental impact on urban development strategies, whereas physically-based simulations remain computationally costly and time consuming, as a consequence of the increasing complexity of urban system dynamics. Hence it is imperative to develop fast, efficient, and economic operational toolkits for urban planners to foster the design, implementation, and evaluation of urban mitigation strategies, while retaining the accuracy and robustness of physical models. In this study, we adopt a machine learning (ML) algorithm, viz. Gaussian Process Regression, to emulate the physics of heat and biogenic carbon exchange in the built environment. The ML surrogate is trained and validated on the simulation results generated by a state-of-the-art single-layer urban canopy model over a wide range of urban characteristics, showing high accuracy in capturing heat and carbon dynamics. Using the validated surrogate model, we then conduct multi-objective optimization using the genetic algorithm to optimize urban design scenarios for desirable urban mitigation effects. While the use of urban greenery is found effective in mitigating both urban heat and carbon emissions, there is manifest trade-offs among ameliorating diverse urban environmental indicators. Numéro de notice : A2022-244 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101796 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101796 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100184
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101796[article]A continuous change tracker model for remote sensing time series reconstruction / Yangjian Zhang in Remote sensing, vol 14 n° 9 (May-1 2022)
![]()
[article]
Titre : A continuous change tracker model for remote sensing time series reconstruction Type de document : Article/Communication Auteurs : Yangjian Zhang, Auteur ; Li Wang, Auteur ; Yuanhuizi He, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse harmonique
[Termes IGN] compression d'image
[Termes IGN] détection de changement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] production primaire brute
[Termes IGN] reconstruction d'image
[Termes IGN] réflectance de surface
[Termes IGN] série temporelleRésumé : (auteur) It is hard for current time series reconstruction methods to achieve the balance of high-precision time series reconstruction and explanation of the model mechanism. The goal of this paper is to improve the reconstruction accuracy with a well-explained time series model. Thus, we developed a function-based model, the CCTM (Continuous Change Tracker Model) model, that can achieve high precision in time series reconstruction by tracking the time series variation rate. The goal of this paper is to provide a new solution for high-precision time series reconstruction and related applications. To test the reconstruction effects, the model was applied to four types of datasets: normalized difference vegetation index (NDVI), gross primary productivity (GPP), leaf area index (LAI), and MODIS surface reflectance (MSR). Several new observations are as follows. First, the CCTM model is well explained and based on the second-order derivative theorem, which divides the yearly time series into four variation types including uniform variations, decelerated variations, accelerated variations, and short-periodical variations, and each variation type is represented by a designed function. Second, the CCTM model provides much better reconstruction results than the Harmonic model on the NDVI, GPP, MSR, and LAI datasets for the seasonal segment reconstruction. The combined use of the Savitzky–Golay filter and the CCTM model is better than the combinations of the Savitzky–Golay filter with other models. Third, the Harmonic model has the best trend-fitting ability on the yearly time series dataset, with the highest R-Square and the lowest RMSE among the four function fitting models. However, with seasonal piecewise fitting, the four models all achieved high accuracy, and the CCTM performs the best. Fourth, the CCTM model should also be applied to time series image compression, two compression patterns with 24 coefficients and 6 coefficients respectively are proposed. The daily MSR dataset can achieve a compression ratio of 15 by using the 6-coefficients method. Finally, the CCTM model also has the potential to be applied to change detection, trend analysis, and phenology and seasonal characteristics extractions. Numéro de notice : A2022-384 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14092280 Date de publication en ligne : 09/05/2022 En ligne : https://doi.org/10.3390/rs14092280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100662
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2280[article]A cost-effective algorithm for calibrating multiscale geographically weighted regression models / Bo Wu in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : A cost-effective algorithm for calibrating multiscale geographically weighted regression models Type de document : Article/Communication Auteurs : Bo Wu, Auteur ; Jinbiao Yan, Auteur ; Hui Lin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 898 - 917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] grande échelle
[Termes IGN] hétérogénéité spatiale
[Termes IGN] jeu de données
[Termes IGN] modélisation spatiale
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) The multiscale geographically weighted regression (MGWR) model is a useful extension of the geographically weighted regression (GWR) model. MGWR, however, is a kind of Nadaraya–Watson kernel smoother, which usually leads to inaccurate estimates for the regression function and suffers from the boundary effect. Moreover, the widely used calibration technique for the MGWR with a back-fitting estimator (MGWR-BF) is computationally demanding, preventing it from being applied to large-scale data. To overcome these problems, we proposed a local linear-fitting-based MGWR (MGWR-LL) by introducing a local spatially varying coefficient model in which coefficients of different variables could be characterised as linear functions of spatial coordinates with different degrees of smoothness. Then the model was calibrated with a two-step least-squared estimated algorithm. Both simulated and actual data were implemented to validate the performance of the proposed method. The results consistently showed that the MGWR-LL automatically corrected for the boundary effect and improved the accuracy in most cases, not only in the goodness-of-fit measure but also in reducing the bias of the coefficient estimates. Moreover, the MGWR-LL significantly outperformed the MGWR-BF in computational cost, especially for larger-scale data. These results demonstrated that the proposed method can be a useful tool for the MGWR calibration. Numéro de notice : A2022-342 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1999457 Date de publication en ligne : 29/11/2021 En ligne : https://doi.org/10.1080/13658816.2021.1999457 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100516
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 898 - 917[article]Meta-learning based hyperspectral target detection using siamese network / Yulei Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
PermalinkSuspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 (April 2022)
PermalinkHV-LSC-ex2 : velocity field interpolation using extended least-squares collocation / Rebekka Steffen in Journal of geodesy, vol 96 n° 3 (March 2022)
PermalinkA novel regression method for harmonic analysis of time series / Qiang Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 185 (March 2022)
PermalinkA search step optimization in an ambiguity function-based GNSS precise positioning / Sławomir Cellmer in Survey review, vol 54 n° 383 (March 2022)
PermalinkSynergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/03/2022])
PermalinkA combination of convolutional and graph neural networks for regularized road surface extraction / Jingjing Yan in IEEE Transactions on geoscience and remote sensing, vol 60 n° 2 (February 2022)
PermalinkGCN-Denoiser: mesh denoising with graph convolutional networks / Yuefan Shen in ACM Transactions on Graphics, TOG, Vol 41 n° 1 (February 2022)
PermalinkA geographically weighted artificial neural network / Julian Haguenauer in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
PermalinkObject recognition algorithm based on optimized nonlinear activation function-global convolutional neural network / Feng-Ping An in The Visual Computer, vol 38 n° 2 (February 2022)
Permalink