Descripteur
Termes IGN > mathématiques > algorithmique > plus proche voisin, algorithme du
plus proche voisin, algorithme duVoir aussi |
Documents disponibles dans cette catégorie (47)



Etendre la recherche sur niveau(x) vers le bas
Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/05/2022])
![]()
[article]
Titre : Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur Année de publication : 2022 Article en page(s) : pp 1225 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données localisées
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] polarisation
[Termes IGN] rizièreRésumé : (Auteur) Three Sentinel-1A datasets in vertical transmitted and horizontal received (VH) and vertical transmitted and vertical received (VV) polarisations, and the linear combination of VH and VV (VHVV) are evaluated for rice green leaf area index (LAI) estimation using four machine learning regression models [Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT)]. Results showed that for the entire growing season, VV outperformed VH, recording an R2 of 0.68 and an RMSE of 0.98 m2/m2 with the k-NN model. However, VHVV produced the most accurate estimates with GBDT (R2 of 0.82 and RMSE of 0.68 m2/m2), followed by that of VHVV with RF (R2 of 0.78 and RMSE of 0.90 m2/m2). Our findings have further confirmed that combining VH and VV data can achieve improved rice growth modelling, and that tree-based algorithms can better handle data dimensionality. Numéro de notice : A2022-274 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1773545 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1773545 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100753
in Geocarto international > vol 37 n° 5 [01/05/2022] . - pp 1225 - 1236[article]Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
[article]
Titre : Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour Type de document : Article/Communication Auteurs : Olivier de Joinville , Auteur ; Chloé Marcon, Auteur
Année de publication : 2022 Article en page(s) : pp 36 - 44 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéroport
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] BD Topo
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] contrôle qualité
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] extraction de la végétation
[Termes IGN] image Pléiades-HR
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle numérique de surface
[Termes IGN] Nice
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] QGIS
[Termes IGN] réalité de terrainRésumé : (Auteur) Le Service d’information aéronautique (SIA) est un service de la DGAC (Direction générale de l’aviation civile) qui publie et exploite des obstacles à la navigation aérienne afin de sécuriser les vols aux abords des aérodromes. L’article propose une étude comparative entre des données images aériennes (OrthoImages) et des données images satellite (Pléiades et Sentinel) dans les deux domaines suivants : détection d’obstacles (essentiellement végétation et bâtiments) ainsi que leur mise à jour. Il ressort que les images satellite, du fait de leur forte qualité radiométrique et géométrique, offrent un potentiel légèrement supérieur aux images aériennes pour le SIA. De futures études utilisant d’autres capteurs optiques, LiDAR et Radar et des moyens de contrôle plus exhaustifs, devront être menées pour confirmer cette tendance. Numéro de notice : A2022-225 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100191
in XYZ > n° 170 (mars 2022) . - pp 36 - 44[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 112-2022011 SL Revue Centre de documentation Revues en salle Disponible 112-2022012 SL Revue Centre de documentation Revues en salle Disponible
Titre : Introduction au Machine Learning Type de document : Guide/Manuel Auteurs : Chloé-Agathe Azencott, Auteur Mention d'édition : 2ème édition Editeur : Paris : Dunod Année de publication : 2022 Collection : Info Sup Importance : 256 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-2-10-083476-1 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage par renforcement
[Termes IGN] arbre de décision
[Termes IGN] classification bayesienne
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle de régression
[Termes IGN] partition des données
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] réseau neuronal artificiel
[Termes IGN] séparateur à vaste margeIndex. décimale : 26.40 Intelligence artificielle Résumé : (Editeur) Cet ouvrage s'adresse aux étudiantes et étudiants en informatique ou maths appliquées, en L3, master ou école d'ingénieurs. Le Machine Learning est une discipline dont les outils puissants permettent aujourd'hui à de nombreux secteurs d'activité de réaliser des progrès spectaculaires grâce à l'exploitation de grands volumes de données. Le but de cet ouvrage est de vous fournir des bases solides sur les concepts et les algorithmes de ce domaine en plein essor. Il vous aidera à identifier les problèmes qui peuvent être résolus par une approche Machine Learning, à les formaliser, à identifier les algorithmes les mieux adaptés à chaque problème, à les mettre en oeuvre, et enfin à savoir évaluer les résultats obtenus. Les notions de cours sont illustrées et complétées par 85 exercices, tous corrigés. Note de contenu :
1. Présentation du machine learning
2. Apprentissage supervisé
3. Sélection de modèle et évaluation
4. Inférence bayésienne
5. Régressions paramétriques
6. Régularisation
7. Réseaux de neurones artificiels
8. Méthodes des plus proches voisins
9. Arbres et forêts
10. Machines à vecteurs de support et méthodes à noyaux
11. Réduction de dimension
12. Clustering
Annexe A - Notions d'optimisation convexe
Annexe B - Notions d'estimation ponctuelleNuméro de notice : 26783 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Manuel de cours Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99909 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 26783-01 26.40 Manuel Informatique Centre de documentation Informatique Disponible An automatic workflow for orientation of historical images with large radiometric and geometric differences / Ferdinand Maiwald in Photogrammetric record, vol 36 n° 174 (June 2021)
![]()
[article]
Titre : An automatic workflow for orientation of historical images with large radiometric and geometric differences Type de document : Article/Communication Auteurs : Ferdinand Maiwald, Auteur ; Hans-Gerd Maas, Auteur Année de publication : 2021 Article en page(s) : pp 77 - 103 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement de formes
[Termes IGN] artefact
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image ancienne
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] réalité augmentée
[Termes IGN] réalité virtuelle
[Termes IGN] reconstruction 3D
[Termes IGN] scène urbaine
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) This contribution proposes a workflow for a completely automatic orientation of historical terrestrial urban images. Automatic structure from motion (SfM) software packages often fail when applied to historical image pairs due to large radiometric and geometric differences causing challenges with feature extraction and reliable matching. As an innovative initialising step, the proposed method uses the neural network D2-Net for feature extraction and Lowe’s mutual nearest neighbour matcher. The principal distance for every camera is estimated using vanishing point detection. The results were compared to three state-of-the-art SfM workflows (Agisoft Metashape, Meshroom and COLMAP) with the proposed workflow outperforming the other SfM tools. The resulting camera orientation data are planned to be imported into a web and virtual/augmented reality (VR/AR) application for the purpose of knowledge transfer in cultural heritage. Numéro de notice : A2021-471 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12363 Date de publication en ligne : 06/06/2021 En ligne : https://doi.org/10.1111/phor.12363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97925
in Photogrammetric record > vol 36 n° 174 (June 2021) . - pp 77 - 103[article]DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques / Ali H. Ahmed Suliman in Geocarto international, vol 36 n° 7 ([15/04/2021])
![]()
[article]
Titre : DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques Type de document : Article/Communication Auteurs : Ali H. Ahmed Suliman, Auteur ; W. Gumindoga, Auteur ; Taymoor A. Awchi, Auteur ; Ayob Katimon, Auteur Année de publication : 2021 Article en page(s) : pp 803 - 819 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] analyse comparative
[Termes IGN] bassin hydrographique
[Termes IGN] carte topographique
[Termes IGN] Iran
[Termes IGN] limite de résolution géométrique
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] ruissellementRésumé : (Auteur) The accurate estimation of terrain characteristics is central in rainfall runoff modelling. In this study, influences of Digital Elevation Models (DEMs) obtained from different sources, resolutions and rescaling techniques are compared for Peak flow prediction in a large-scale watershed by the Topographic driven model (TOPMODEL). The comparison includes graphical representation and statistical assessments using daily time series data. As a result, DEM extracted from contour map (DEM-Con) showed better performance when DEM resolutions increased, but the Advanced Space-borne Thermal Emission and Reflection Radiometer (DEM-Aster) continued to achieve less Relative Error (RE) at low resolution. Moreover, better RE values were found at cubic convolution technique to predict the peaks followed by nearest neighbor and bilinear. In addition, this study indicated that DEM resolution is more sensitive factor for TOPMODEL simulation compared to DEM sources and rescaling techniques for streamflow and peaks prediction. Numéro de notice : A2021-295 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622599 Date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1622599 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97355
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 803 - 819[article]PermalinkAssessing local trends in indicators of ecosystem services with a time series of forest resource maps / Matti Katila in Silva fennica, vol 54 n° 4 (September 2020)
PermalinkExtraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkImproved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests / Sruthi M. Krishna Moorthy in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkA point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkDirectionally constrained fully convolutional neural network for airborne LiDAR point cloud classification / Congcong Wen in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkImproved indoor positioning based on range-free RSSI fingerprint method / Marcin Uradzinski in Journal of geodetic science, vol 10 n° 1 (January 2020)
PermalinkDepth-based hand pose estimation : Methods, data, and challenges / James Steven Supančič in International journal of computer vision, vol 126 n° 11 (November 2018)
PermalinkNo-reference image quality assessment for image auto-denoising / Xiangfei Kong in International journal of computer vision, vol 126 n° 5 (May 2018)
PermalinkAggregate keyword nearest neighbor queries on road networks / Pengfei Zhang in Geoinformatica [en ligne], vol 22 n° 2 (April 2018)
Permalink