Descripteur
Termes IGN > mathématiques > analyse numérique > optimisation (mathématiques)
optimisation (mathématiques)Synonyme(s)algorithme d'optimisation minimisationVoir aussi |
Documents disponibles dans cette catégorie (487)



Etendre la recherche sur niveau(x) vers le bas
Estimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data / Zhuomei Huang in Geocarto international, vol 38 n° inconnu ([01/01/2023])
![]()
[article]
Titre : Estimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data Type de document : Article/Communication Auteurs : Zhuomei Huang, Auteur ; Yichao Tian, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Chine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] mangrove
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) Blue carbon ecosystems such as mangroves are natural barriers to resisting and alleviating the impact of storm surges and extreme catastrophic weather. Accurate and efficient determination of the aboveground biomass of mangroves is of great importance for the protection and restoration of blue carbon ecosystems and their response to climate change. This study proposes a light gradient boosting model (LGBM) based on particle swarm optimization (PSO) algorithm for feature selection. We constructed and verified the proposed model using 227 quadrat datasets from a field survey and Sentinel-1 and Sentinel-2 data. The determination coefficient (R2) and root-mean-square error (RMSE) were used to evaluate the performance of the model. Compared with random forest(RF), K-nearest neighbourhood regression(KNNR), extreme gradient boosting(XGBR), LGBM, and other machine learning algorithms, the LGBM-PSO model achieves better results (R2 = 0.7807, RMSE = 24.6864 Mg·ha−1), The predicted range of mangrove biomass is 4.623–206.975 Mg·ha−1. Therefore, the use of multisource remote sensing data combined with the LGBM-PSO model can provide better prediction results of aboveground biomass of mangroves, thereby providing a new method for estimating the aboveground biomass of large-scale mangroves. Numéro de notice : A2022-621 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2102226 Date de publication en ligne : 22/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2102226 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101356
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
![]()
[article]
Titre : How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data Type de document : Article/Communication Auteurs : Rongfang Lyu, Auteur ; Jili Pang, Auteur ; Xiaolei Tian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace vert
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] optimisation (mathématiques)
[Termes IGN] paysage urbain
[Termes IGN] plan d'eau
[Termes IGN] planification urbaine
[Termes IGN] réseau bayesien
[Termes IGN] semis de points
[Termes IGN] température au solRésumé : (auteur) The systematical exploration of how two-dimensional (2D) and three-dimensional (3D) features of urban landscapes influence land surface temperature (LST) is still limited. Therefore, we investigated the influence of three main urban landscapes—urban green space, impervious land, and water bodies on LST, with a particular focus on the 3D vegetation metrics of green volume (GV) and leaf area index (LAI). We used Yinchuan City, China, as a case study. We quantified the impacts of various 2D/3D metrics of the three landscape types on LST using a random forest analysis with multiple sources, including Unmanned Aerial Vehicle (UAV) and remote sensing images. We then generated a Bayesian Network (BN) model to identify the optimal configurations for each landscape type. We found that using 11 of the 31 metrics considered, our model could explain 81.8% of the observed variance in LST of Yinchuan City. Among those, water body metrics were the most important, followed by vegetation abundance, impervious land metrics, and landscape pattern of urban green space. The mean classification error of the BN model was only 22.9%. We suggest that this makes the BN model a promising support tool for urban planning with a view to urban heat island mitigation. Our findings also stress the importance of considering both 2D and 3D features when considering urban cooling strategies. Numéro de notice : A2023-007 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104287 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102095
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104287[article]Parameterisation of the GNSS troposphere tomography domain with optimisation of the nodes’ distribution / Estera Trzcina in Journal of geodesy, vol 97 n° 1 (January 2023)
![]()
[article]
Titre : Parameterisation of the GNSS troposphere tomography domain with optimisation of the nodes’ distribution Type de document : Article/Communication Auteurs : Estera Trzcina, Auteur ; Witold Rohm, Auteur ; Kamil Smolak, Auteur Année de publication : 2023 Article en page(s) : n° 2 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] données GNSS
[Termes IGN] interpolation bilinéaire
[Termes IGN] modèle météorologique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] radiosondage
[Termes IGN] récepteur GNSS
[Termes IGN] retard troposphérique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] système de grille globale discrète
[Termes IGN] teneur en vapeur d'eau
[Termes IGN] tomographie
[Termes IGN] troposphèreRésumé : (auteur) Water vapour is a highly variable constituent of the troposphere; thus, its high-resolution measurements are of great importance to weather prediction systems. The Global Navigation Satellite Systems (GNSS) are operationally used in the estimation of the tropospheric state and assimilation of the results into the weather models. One of the GNSS techniques of troposphere sensing is tomography which provides 3-D fields of wet refractivity. The tomographic results have been successfully assimilated into the numerical weather models, showing the great potential of this technique. The GNSS tomography can be based on two different approaches to the parameterisation of the model’s domain, i.e. block (voxel-based) or grid (node-based) approach. Regardless of the parameterisation approach, the tomographic domain should be discretised, which is usually performed in a regular manner, with a grid resolution depending on the mean distance between the GNSS receivers. In this work, we propose a new parameterisation approach based on the optimisation of the tomographic nodes’ location, taking into account the non-uniform distribution of the GNSS information in the troposphere. The experiment was performed using a dense network of 16 low-cost multi-GNSS receivers located in Wrocław and its suburbs, with a mean distance of 3 km. Cross-validation of four different parameterisation approaches is presented. The validation is performed based on the Weather Research and Forecasting model as well as radiosonde observations. The new approach improves the results of wet refractivity estimation by 0.5–2 ppm in terms of RMSE, especially for altitudes of 0.5–2.0 km. Numéro de notice : A2023-044 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1007/s00190-022-01691-0 Date de publication en ligne : 30/12/2022 En ligne : https://doi.org/10.1007/s00190-022-01691-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102343
in Journal of geodesy > vol 97 n° 1 (January 2023) . - n° 2[article]Automatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
![]()
[article]
Titre : Automatic registration of point cloud and panoramic images in urban scenes based on pole matching Type de document : Article/Communication Auteurs : Yuan Wang, Auteur ; Yuhao Li, Auteur ; Yiping Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103083 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de formes
[Termes IGN] chevauchement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] image virtuelle
[Termes IGN] optimisation par essaim de particules
[Termes IGN] points registration
[Termes IGN] recalage d'image
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] zone tamponRésumé : (auteur) Given the initial calibration of multiple sensors, the fine registration between Mobile Laser Scanning (MLS) point clouds and panoramic images is still challenging due to the unforeseen movement and temporal misalignment while collecting. To tackle this issue, we proposed a novel automatic method to register the panoramic images and MLS point clouds based on the matching of pole objects. Firstly, 2D pole instances in the panoramic images are extracted by a semantic segmentation network and then optimized. Secondly, every corresponding frustum point cloud of each pole instance is obtained by a shape-adaptive buffer region in the panoramic image, and the 3D pole object is extracted via a combination of slicing, clustering, and connected domain analysis, then all 3D pole objects are fused. Finally, 2D and 3D pole objects are re-projected onto virtual images respectively, and then fine 2D-3D correspondences are collected through maximizing pole overlapping area by Particle Swarm Optimization (PSO). The accurate extrinsic orientation parameters are acquired by the Efficient Perspective-N-Point (EPnP). The experiments indicate that the proposed method performs effectively on two challenging urban scenes with an average registration error of 2.01 pixels (with RMSE 0.88) and 2.35 pixels (with RMSE 1.03), respectively. Numéro de notice : A2022-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103083 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103083 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102011
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103083[article]Reconstructing compact building models from point clouds using deep implicit fields / Zhaiyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
![]()
[article]
Titre : Reconstructing compact building models from point clouds using deep implicit fields Type de document : Article/Communication Auteurs : Zhaiyu Chen, Auteur ; Hugo Ledoux, Auteur ; Seyran Khademi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 58 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] Bâti-3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de modèle
[Termes IGN] image à haute résolution
[Termes IGN] maillage par triangles
[Termes IGN] optimisation (mathématiques)
[Termes IGN] polygone
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (auteur) While three-dimensional (3D) building models play an increasingly pivotal role in many real-world applications, obtaining a compact representation of buildings remains an open problem. In this paper, we present a novel framework for reconstructing compact, watertight, polygonal building models from point clouds. Our framework comprises three components: (a) a cell complex is generated via adaptive space partitioning that provides a polyhedral embedding as the candidate set; (b) an implicit field is learned by a deep neural network that facilitates building occupancy estimation; (c) a Markov random field is formulated to extract the outer surface of a building via combinatorial optimization. We evaluate and compare our method with state-of-the-art methods in generic reconstruction, model-based reconstruction, geometry simplification, and primitive assembly. Experiments on both synthetic and real-world point clouds have demonstrated that, with our neural-guided strategy, high-quality building models can be obtained with significant advantages in fidelity, compactness, and computational efficiency. Our method also shows robustness to noise and insufficient measurements, and it can directly generalize from synthetic scans to real-world measurements. The source code of this work is freely available at https://github.com/chenzhaiyu/points2poly. Numéro de notice : A2022-824 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.017 Date de publication en ligne : 17/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102001
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 58 - 73[article]Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)
PermalinkA whale optimization algorithm–based cellular automata model for urban expansion simulation / Yuan Ding in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
PermalinkAn improved optimization model for crowd evacuation considering individual exit choice preference / Fei Gao in Transactions in GIS, vol 26 n° 7 (November 2022)
PermalinkA fast satellite selection algorithm for multi-GNSS marine positioning based on improved particle swarm optimisation / Xiaoguo Guan in Survey review, vol 54 n° 387 (November 2022)
PermalinkMulti-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR / Zhenyang Hui in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
PermalinkFlash-flood hazard susceptibility mapping in Kangsabati River Basin, India / Rabin Chakrabortty in Geocarto international, vol 37 n° 23 ([15/10/2022])
PermalinkPrediction of suspended sediment concentration using hybrid SVM-WOA approaches / Sandeep Samantaray in Geocarto international, vol 37 n° 19 ([15/09/2022])
PermalinkA general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)
PermalinkFull-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR / Xue Ji in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
PermalinkGenerating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
Permalink