Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > algorithme génétique
algorithme génétiqueVoir aussi |
Documents disponibles dans cette catégorie (74)



Etendre la recherche sur niveau(x) vers le bas
Multi-objective optimization of urban environmental system design using machine learning / Peiyuan Li in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Multi-objective optimization of urban environmental system design using machine learning Type de document : Article/Communication Auteurs : Peiyuan Li, Auteur ; Tianfang Xu, Auteur ; Shiqi Wei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101796 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme génétique
[Termes IGN] apprentissage automatique
[Termes IGN] dioxyde de carbone
[Termes IGN] ilot thermique urbain
[Termes IGN] indicateur environnemental
[Termes IGN] milieu urbain
[Termes IGN] optimisation (mathématiques)
[Termes IGN] planification urbaine
[Termes IGN] processus gaussien
[Termes IGN] régression
[Termes IGN] végétationRésumé : (auteur) The efficacy of urban mitigation strategies for heat and carbon emissions relies heavily on local urban characteristics. The continuous development and improvement of urban land surface models enable rather accurate assessment of the environmental impact on urban development strategies, whereas physically-based simulations remain computationally costly and time consuming, as a consequence of the increasing complexity of urban system dynamics. Hence it is imperative to develop fast, efficient, and economic operational toolkits for urban planners to foster the design, implementation, and evaluation of urban mitigation strategies, while retaining the accuracy and robustness of physical models. In this study, we adopt a machine learning (ML) algorithm, viz. Gaussian Process Regression, to emulate the physics of heat and biogenic carbon exchange in the built environment. The ML surrogate is trained and validated on the simulation results generated by a state-of-the-art single-layer urban canopy model over a wide range of urban characteristics, showing high accuracy in capturing heat and carbon dynamics. Using the validated surrogate model, we then conduct multi-objective optimization using the genetic algorithm to optimize urban design scenarios for desirable urban mitigation effects. While the use of urban greenery is found effective in mitigating both urban heat and carbon emissions, there is manifest trade-offs among ameliorating diverse urban environmental indicators. Numéro de notice : A2022-244 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101796 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101796 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100184
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101796[article]Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data / Andras Balazs in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
![]()
[article]
Titre : Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data Type de document : Article/Communication Auteurs : Andras Balazs, Auteur ; Eero Liski, Auteur ; Sakari Tuominen, Auteur Année de publication : 2022 Article en page(s) : n° 100012 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme génétique
[Termes IGN] bois sur pied
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement forestier
[Termes IGN] réseau neuronal artificiel
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) In the remote sensing of forests, point cloud data from airborne laser scanning contains high-value information for predicting the volume of growing stock and the size of trees. At the same time, laser scanning data allows a very high number of potential features that can be extracted from the point cloud data for predicting the forest variables. In some methods, the features are first extracted by user-defined algorithms and the best features are selected based on supervised learning, whereas both tasks can be carried out automatically by deep learning methods typically based on deep neural networks. In this study we tested k-nearest neighbor method combined with genetic algorithm (k-NN), artificial neural network (ANN), 2-dimensional convolutional neural network (2D-CNN) and 3-dimensional CNN (3D-CNN) for estimating the following forest variables: volume of growing stock, stand mean height and mean diameter. The results indicate that there were no major differences in the accuracy of the tested methods, but the ANN and 3D-CNN generally resulted in the lowest RMSE values for the predicted forest variables and the highest R2 values between the predicted and observed forest variables. The lowest RMSE scores were 20.3% (3D-CNN), 6.4% (3D-CNN) and 11.2% (ANN) and the highest R2 results 0.90 (3D-CNN), 0.95 (3D-CNN) and 0.85 (ANN) for volume of growing stock, stand mean height and mean diameter, respectively. Covariances of all response variable combinations and all predictions methods were lower than corresponding covariances of the field observations. ANN predictions had the highest covariances for mean height vs. mean diameter and total growing stock vs. mean diameter combinations and 3D-CNN for mean height vs. total growing stock. CNNs have distinct theoretical advantage over the other methods in complex recognition or classification tasks, but the utilization of their full potential may possibly require higher point density clouds than applied here. Thus, the relatively low density of the point clouds data may have been a contributing factor to the somewhat inconclusive ranking of the methods in this study. The input data and computer codes are available at: https://github.com/balazsan/ALS_NNs. Numéro de notice : A2022-265 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2022.100012 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100263
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100012[article]Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 (April 2022)
![]()
[article]
Titre : Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms Type de document : Article/Communication Auteurs : Marzieh Fadaee, Auteur ; Amin Mahdavi-Meymand, Auteur ; Mohammad Zounemat-Kermani, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 961 - 977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] algorithme génétique
[Termes IGN] analyse comparative
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] Inférence floue
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificiel
[Termes IGN] sédimentRésumé : (auteur) The present study investigates the capability of two metaheuristic optimization approaches, namely the Butterfly Optimization Algorithm (BOA) and the Genetic Algorithm (GA), integrated with machine learning models in Suspended Sediment Load (SSL) prediction. The Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) are applied as the predictive data-driven models. Independent input variables, i.e., the water temperature (T), river discharge (Q), and specific conductance (SC) are used for the prediction of SSL based on several statistical indices. The results indicate that the performances of all studied models were close to one another; moreover, the metaheuristic algorithms were found to increase the accuracy of the ANFIS and ANN models for approximately 11.73 percent and 4.30 percent, respectively. In general, the BOA outperformed the GA in enhancing the optimization performance of the learning process in the applied machine learning models. Numéro de notice : A2022-392 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1753821 Date de publication en ligne : 29/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1753821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100685
in Geocarto international > vol 37 n° 4 (April 2022) . - pp 961 - 977[article]Deformation analysis: the modified GREDOD method / Mehmed Batilović in Geodetski vestnik, vol 66 n° 1 (March 2022)
![]()
[article]
Titre : Deformation analysis: the modified GREDOD method Type de document : Article/Communication Auteurs : Mehmed Batilović, Auteur ; Željko Kanović, Auteur ; Zoran Sušić, Auteur ; Marko Z. Marković, Auteur ; Vladimir Bulatović, Auteur Année de publication : 2022 Article en page(s) : pp 60 - 75 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] algorithme génétique
[Termes IGN] déformation géométrique
[Termes IGN] méthode robuste
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) In this paper, a modified Generalised Robust Estimation of Deformation from Observation Differences (GREDOD) method is presented, based on the application of genetic algorithm (GA) and generalised particle swarm optimisation (GPSO) algorithm in solving the optimisation problem of this method, which is, in essence, a problem of determining the optimal datum of the displacement vector. The procedure of deformation analysis using this modification of the GREDOD method is demonstrated in the example of the two-dimensional geodetic network presented in numerous research and in which all observations and displacements were simulated. Using both algorithms, GA and GPSO, almost identical results of deformation analysis were obtained, except datum solutions of the displacement vector, which are completely different. These results differ only slightly from the results obtained using the methods of Hannover, Karlsruhe, Delft, Fredericton, München, Caspary, and the classical robust method. Numéro de notice : A2022-453 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.15292/geodetski-vestnik.2022.01.60-75 En ligne : https://dx.doi.org/10.15292/geodetski-vestnik.2022.01.60-75 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100984
in Geodetski vestnik > vol 66 n° 1 (March 2022) . - pp 60 - 75[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 139-2022011 SL Revue Centre de documentation Revues en salle Disponible Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : Flood susceptibility mapping using meta-heuristic algorithms Type de document : Article/Communication Auteurs : Alireza Arabameri, Auteur ; Amir Seyed Danesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 949 - 974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] base de données localisées
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Google Earth
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] optimisation par essaim de particules
[Termes IGN] SAGA GIS
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement de données localisées
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) Flood is a common global natural hazard, and detailed flood susceptibility maps for specific watersheds are important for flood management measures. We compute the flood susceptibility map for the Kaiser watershed in Iran using machine learning models such as support vector machine (SVM), Particle swarm optimization (PSO), and genetic algorithm (GA) along with ensembles (PSO-GA and SVM-GA). The application of such machine learning models in flood susceptibility assessment and mapping is analyzed, and future research suggestions are presented. The model of flood susceptibility model was constructed based on fifteen causatives: slope, slope aspect, elevation, plan curvature, land use, and land cover, normalize differences vegetation index (NDVI), convergence index (CI), topographical wetness index (TWI), topographic positioning Index (TPI), drainage density (DD), distance to stream, terrain ruggedness index (TRI), terrain surface texture (TST), geology and stream power index (SPI) and flood inventory data which later is divided by 70% for training the model and 30% for validated the model. The model output was evaluated through sensitivity, specificity, accuracy, precision, Cohen Kappa, F-score, and receiver operating curve (ROC). The evaluation of flood susceptibility mapping through the receiver operating curve method along with flood density shows robust results from support vector machine (0.839), particle swarm optimization (0.851), genetic algorithm (0.874), SVM-GA (0.886), and PSO-GA (0.902). Compared have done with some methods commonly used in this susceptibility assessment. A high-quality, informative database is essential for the classification of flood types in flood susceptibility mapping that is very important and helpful to improve the model performances. The performance of the ensemble PSO-GA is better than that of the machine learning model, yielding a high degree of accuracy (AUC-0.902%). Our approach, therefore, provides a novel method for flood susceptibility studies in other watersheds. Numéro de notice : A2022-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2060138 Date de publication en ligne : 11/04/2022 En ligne : https://doi.org/10.1080/19475705.2022.2060138 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100383
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 949 - 974[article]Modeling of precipitable water vapor from GPS observations using machine learning and tomography methods / Mir Reza Ghaffari Razin in Advances in space research, vol 69 n° 7 (April 2022)
PermalinkRandom forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture / Pashrant K. Srivastava in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
PermalinkIncreasing efficiency of the robust deformation analysis methods using genetic algorithm and generalised particle swarm optimisation / Mehmed Batilović in Survey review, Vol 53 n° 378 (May 2021)
PermalinkA novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (May 2021)
PermalinkA Voronoi-based method for land-use optimization using semidefinite programming and gradient descent algorithm / Vorapong Suppakitpaisarn in International journal of geographical information science IJGIS, vol 35 n° 5 (May 2021)
PermalinkUrban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB / Mahya Norallahi in Natural Hazards, vol 106 n° 1 (March 2021)
PermalinkPermalinkPermalinkAdvanced machine learning optimized by the genetic algorithm in ionospheric models using long-term multi-instrument observations / Wang Li in Remote sensing, vol 12 n° 5 (March 2020)
PermalinkAnalysing performance of SLEUTH model calibration using brute force and genetic algorithm–based methods / Ankita Saxena in Geocarto international, vol 35 n° 3 ([01/03/2020])
Permalink