Descripteur



Etendre la recherche sur niveau(x) vers le bas
Route intersection reduction with connected autonomous vehicles / Sadegh Motallebi in Geoinformatica [en ligne], vol 25 n° 1 (January 2021)
![]()
[article]
Titre : Route intersection reduction with connected autonomous vehicles Type de document : Article/Communication Auteurs : Sadegh Motallebi, Auteur ; Hairuo Xie, Auteur ; Egemen Tanin, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 99 - 125 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] calcul d'itinéraire
[Termes descripteurs IGN] carrefour
[Termes descripteurs IGN] chemin le plus court (algorithme)
[Termes descripteurs IGN] gestion de trafic
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] réseau routier
[Termes descripteurs IGN] trafic routierRésumé : (Auteur) A common cause of traffic congestions is the concentration of intersecting vehicle routes. It can be difficult to reduce the intersecting routes in existing traffic systems where the routes are decided independently from vehicle to vehicle. The development of connected autonomous vehicles provides the opportunity to address the intersecting route problem as the route of vehicles can be coordinated globally. We prototype a traffic management system for optimizing traffic with connected autonomous vehicles. The system allocates routes to the vehicles based on streaming traffic data. We develop two route assignment algorithms for the system. The algorithms can help to mitigate traffic congestions by reducing intersecting routes. Extensive experiments are conducted to compare the proposed algorithms and two state-of-the-art route assignment algorithms with both synthetic and real road networks in a simulated traffic management system. The experimental results show that the proposed algorithms outperform the competitors in terms of the travel time of the vehicles. Numéro de notice : A2021-093 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00420-z date de publication en ligne : 23/08/2020 En ligne : https://doi.org/10.1007/s10707-020-00420-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96933
in Geoinformatica [en ligne] > vol 25 n° 1 (January 2021) . - pp 99 - 125[article]Assessing local trends in indicators of ecosystem services with a time series of forest resource maps / Matti Katila in Silva fennica, vol 54 n° 4 (September 2020)
![]()
[article]
Titre : Assessing local trends in indicators of ecosystem services with a time series of forest resource maps Type de document : Article/Communication Auteurs : Matti Katila, Auteur ; Tuomas Rajala, Auteur ; Annika S. Kangas, Auteur Année de publication : 2020 Article en page(s) : n° 10347 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] inventaire forestier étranger (données)
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] ressources forestières
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] service écosystémique
[Vedettes matières IGN] Economie forestière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Since the 1990’s, forest resource maps and small area estimates have been produced by combining national forest inventory (NFI) field plot data, optical satellite images and numerical map data using a non-parametric k-nearest neighbour method. In Finland, thematic maps of forest variables have been produced by the means of multi-source NFI (MS-NFI) for eight to ten times depending on the geographical area, but the resulting time series have not been systematically utilized. The objective of this study was to explore the possibilities of the time series for monitoring the key ecosystem condition indicators for forests. To this end, a contextual Mann-Kendall (CMK) test was applied to detect trends in time-series of two decades of thematic maps. The usefulness of the observed trends may depend both on the scale of the phenomena themselves and the uncertainties involved in the maps. Thus, several spatial scales were tested: the MS-NFI maps at 16 × 16 m2 pixel size and units of 240 × 240 m2, 1200 × 1200 m2 and 12 000 × 12 000 m2 aggregated from the MS-NFI map data. The CMK test detected areas of significant increasing trends of mean volume on both study sites and at various unit sizes except for the original thematic map pixel size. For other variables such as the mean volume of tree species groups, the proportion of broadleaved tree species and the stand age, significant trends were mostly found only for the largest unit size, 12 000 × 12 000 m2. The multiple testing corrections decreased the amount of significant p-values from the CMK test strongly. The study showed that significant trends can be detected enabling indicators of ecosystem services to be monitored from a time-series of satellite image-based thematic forest maps. Numéro de notice : A2020-791 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14214/sf.10347 date de publication en ligne : 14/09/2020 En ligne : https://doi.org/10.14214/sf.10347 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96562
in Silva fennica > vol 54 n° 4 (September 2020) . - n° 10347[article]Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method Type de document : Article/Communication Auteurs : Vijendra Singh Bramhe, Auteur ; Sanjay Kumar Ghosh, Auteur ; Pradeep Kumar Garg, Auteur Année de publication : 2020 Article en page(s) : pp 1067 - 1087 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] texture d'imageRésumé : (auteur) Information of built-up area is essential for various applications, such as sustainable development or urban planning. Built-up area extraction using optical data is challenging due to spectral confusion between built-up and other classes (bare land or river sand, etc.). Here an automated approach has been proposed to generate built-up maps using spectral-textural features and feature selection techniques. Eight Grey-Level Co-Occurrence Matrix based texture features are extracted using Landsat-8 Operational Land Imager bands and combined with multispectral data. The most informative features are selected from combined spectral-textural dataset using feature selection techniques. Further, Support Vector Machine (SVM) classifiers are trained on labelled samples using optimal features and results are compared with Back Propagation-Neural Network (BP-NN) and k-Nearest Neighbour (k-NN). The results show that inclusion of textural features and applying feature selection methods increases the highest overall accuracy of Linear-SVM, RBF-SVM, BP-NN, and k-NN by 9.20%, 9.09%, 8.42%, and 7.39%, respectively. Numéro de notice : A2020-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1566406 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566406 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95489
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1067 - 1087[article]Improved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests / Sruthi M. Krishna Moorthy in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : Improved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests Type de document : Article/Communication Auteurs : Sruthi M. Krishna Moorthy, Auteur ; Kim Calders, Auteur ; Matheus B. Vicari, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3057 - 3070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] atmosphère terrestre
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] faisceau laser
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] foresterie
[Termes descripteurs IGN] forêt de feuillus
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] Python (langage de programmation)
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] transfert radiatifRésumé : (auteur) Accurately classifying 3-D point clouds into woody and leafy components has been an interest for applications in forestry and ecology including the better understanding of radiation transfer between canopy and atmosphere. The past decade has seen an increase in the methods attempting to classify leaves and wood in point clouds based on radiometric or geometric features. However, classification purely based on radiometric features is sensor-specific, and the method by which the local neighborhood of a point is defined affects the accuracy of classification based on geometric features. Here, we present a leaf-wood classification method combining geometrical features defined by radially bounded nearest neighbors at multiple spatial scales in a machine learning model. We compared the performance of three different machine learning models generated by the random forest (RF), XGBoost, and lightGBM algorithms. Using multiple spatial scales eliminates the need for an optimal neighborhood size selection and defining the local neighborhood by radially bounded nearest neighbors makes the method broadly applicable for point clouds of varying quality. We assessed the model performance at the individual tree- and plot-level on field data from tropical and deciduous forests, as well as on simulated point clouds. The method has an overall average accuracy of 94.2% on our data sets. For other data sets, the presented method outperformed the methods in literature in most cases without the need for additional postprocessing steps that are needed in most of the existing methods. We provide the entire framework as an open-source python package. Numéro de notice : A2020-232 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947198 date de publication en ligne : 31/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947198 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94970
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3057 - 3070[article]A point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : A point cloud feature regularization method by fusing judge criterion of field force Type de document : Article/Communication Auteurs : Xijiang Chen, Auteur ; Qing Liu, Auteur ; Kegen Yu, Auteur Année de publication : 2020 Article en page(s) : pp 2994 - 3006 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse vectorielle
[Termes descripteurs IGN] arbre BSP
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] reconstruction d'objet
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] spline cubique
[Termes descripteurs IGN] traitement d'image
[Termes descripteurs IGN] transformation de Hough
[Termes descripteurs IGN] Wuhan (Chine)Résumé : (auteur) Point cloud boundary is an important part of the surface model. The traditional feature extraction method has slow speed and low efficiency and only achieves the boundary feature points. Hence, the point cloud feature regularization is proposed to obtain the boundary lines based on the fast extraction of feature points in this article. First, an improved $k$ - $d$ tree method is used to search the $k$ neighbors of sampling point. Then, the sampling point and its $k$ neighbors are used as the reference points set to fit a microcut plane and project to the plane. The local coordinate system is established on the microcut plane to convert 3-D into 2-D. The boundary feature points are identified by judging criterion of field force and then are sorted and connected according to the vector deflected angle and distance. Finally, the boundary lines are smoothed by the improved cubic B-spline fitting method. Experiments show that the proposed method can extract the boundary feature points quickly and efficiently, and the mean error of boundary lines is 0.0674 mm and the standard deviation is 0.0346 mm, which has high precision. This proposed method was also successfully applied to feature extraction and boundary fitting of Xinyi teaching building of the Wuhan University of Technology. Numéro de notice : A2020-230 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2946326 date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2946326 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94968
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 2994 - 3006[article]Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification / Congcong Wen in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkThe "Incense Road" from Petra to Gaza: an analysis using GIS and Cost functions / Motti Zohar in International journal of geographical information science IJGIS, vol 34 n° 2 (February 2020)
PermalinkImproved indoor positioning based on range-free RSSI fingerprint method / Marcin Uradzinski in Journal of geodetic science, vol 10 n° 1 (janvier 2020)
PermalinkA topographically preserved road‐network tile model and optimal routing method for virtual globes / Quanhua Dong in Transactions in GIS, vol 23 n° 2 (April 2019)
PermalinkPoint clouds for direct pedestrian pathfinding in urban environments / Jesus Balado in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
PermalinkUn algorithme pour battre le record du SwissTrainChallenge : poser le pied dans chacun des 26 cantons le plus rapidement possible en utilisant uniquement des transports publics / Emmanuel Cledat in XYZ, n° 157 (décembre 2018 - février 2019)
PermalinkAn algorithm for on-the-fly K shortest paths finding in multi-storey buildings using a hierarchical topology model / Rosen Ivanov in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)
PermalinkDepth-based hand pose estimation : Methods, data, and challenges / James Steven Supančič in International journal of computer vision, vol 126 n° 11 (November 2018)
PermalinkInternational benchmarking of terrestrial laser scanning approaches for forest inventories / Xinlian Liang in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
PermalinkSea-land interdependence in the global maritime network: the case of Australian port cities / Justin Berli in Networks and Spatial Economics, vol 18 n° 3 (September 2018)
PermalinkA context-based geoprocessing framework for optimizing meetup location of multiple moving objects along road networks / Shaohua Wang in International journal of geographical information science IJGIS, vol 32 n° 7-8 (July - August 2018)
PermalinkNo-reference image quality assessment for image auto-denoising / Xiangfei Kong in International journal of computer vision, vol 126 n° 5 (May 2018)
PermalinkAggregate keyword nearest neighbor queries on road networks / Pengfei Zhang in Geoinformatica [en ligne], vol 22 n° 2 (April 2018)
PermalinkThe characteristics of asymmetric pedestrian behavior : A preliminary study using passive smartphone location data / Nick Malleson in Transactions in GIS, vol 22 n° 2 (April 2018)
PermalinkHarmonic regression of Landsat time series for modeling attributes from national forest inventory data / Barry T. Wilson in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)
PermalinkUn inventaire forestier multisource pour la gestion des territoires / Dinesh Babu Irulappa Pillai Vijayakumar (2018)
PermalinkLocalisation par l'image en milieu urbain : application à la réalité augmentée / Antoine Fond (2018)
PermalinkSocial Distance metric: from coordinates to neighborhoods / Vagan Terziyan in International journal of geographical information science IJGIS, vol 31 n° 11-12 (November - December 2017)
PermalinkHub Labels on the database for large-scale graphs with the COLD framework / Alexandros Efentakis in Geoinformatica [en ligne], vol 21 n° 4 (October - December 2017)
PermalinkUncertain Voronoi cell computation based on space decomposition / Klaus Arthur Schmid in Geoinformatica [en ligne], vol 21 n° 4 (October - December 2017)
Permalink