Descripteur
Termes IGN > informatique > génie logiciel
génie logicielSynonyme(s)Ingénierie logicielle ;ingénierie du logiciel génie du logicielVoir aussi |
Documents disponibles dans cette catégorie (4123)


Etendre la recherche sur niveau(x) vers le bas
Integration of GNSS observations with volunteered geographic information for improved navigation performance / Tarek Hassan in Journal of applied geodesy, vol 16 n° 3 (July 2022)
![]()
[article]
Titre : Integration of GNSS observations with volunteered geographic information for improved navigation performance Type de document : Article/Communication Auteurs : Tarek Hassan, Auteur ; Tamer Fath-Allah, Auteur ; Mohamed Elhabiby, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 265 - 277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données GNSS
[Termes IGN] données localisées des bénévoles
[Termes IGN] Google Earth
[Termes IGN] hauteur du bâti
[Termes IGN] modélisation 3D
[Termes IGN] OpenStreetMap
[Termes IGN] positionnement par GNSS
[Termes IGN] signal GNSS
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) Pedestrian and vehicular navigation relies mainly on Global Navigation Satellite System (GNSS). Even if different navigation systems are integrated, GNSS positioning remains the core of any navigation process as it is the only system capable of providing independent solutions. However, in harsh environments, especially urban ones, GNSS signals are confronted by many obstructions causing the satellite signals to reach the receivers through reflected paths. These No-Line of Sight (NLOS) signals can affect the positioning accuracy significantly. This contribution proposes a new algorithm to detect and exclude these NLOS signals using 3D building models constructed from Volunteered Geographic Information (VGI). OpenStreetMap (OSM) and Google Earth (GE) data are combined to build the 3D models incorporated with GNSS signals in the algorithm. Real field data are used for testing and validation of the presented algorithm and strategy. The accuracy improvement, after exclusion of the NLOS signals, is evaluated employing phase-smoothed code observations. The results show that applying the proposed algorithm can improve the horizontal positioning accuracy remarkably. This improvement reaches 10.72 m, and the Root Mean Square Error (RMSE) drops by 1.64 m (46 % improvement) throughout the epochs with detected NLOS satellites. In addition, the improvement is analyzed in the Along-Track (AT) and Cross-Track (CT) directions. It reaches 6.89 m in the AT direction with a drop of 1.076 m in the RMSE value, while it reaches 8.64 m with a drop of 1.239 m in the RMSE value in the CT direction. Numéro de notice : A2022-496 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0063 Date de publication en ligne : 23/03/2022 En ligne : https://doi.org/10.1515/jag-2021-0063 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100986
in Journal of applied geodesy > vol 16 n° 3 (July 2022) . - pp 265 - 277[article]Polyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
![]()
[article]
Titre : Polyline simplification based on the artificial neural network with constraints of generalization knowledge Type de document : Article/Communication Auteurs : Jiawei Du, Auteur ; Jichong Yin, Auteur ; Chengyi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 313 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] descripteur
[Termes IGN] données maillées
[Termes IGN] données vectorielles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] polyligne
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal artificiel
[Termes IGN] simplification de contour
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The present paper presents techniques for polyline simplification based on an artificial neural network within the constraints of generalization knowledge. The proposed method measures polyline shape characteristics that influence polyline simplification using abstracted descriptors and then introduces these descriptors into the artificial neural network as input properties. In total, 18 descriptors categorized into three types are presented in detail. In a second approach, map simplification principles are abstracted as controllers, imposed after the output layer of the trained artificial neural network to make the polyline simplification comply with these principles. This study worked with three controllers – a basic controller and two knowledge-based controllers. These descriptors and controllers abstracted from generalization knowledge were tested in experiments to determine their efficacy in polyline simplification based on the artificial neural network. The experimental results show that the utilization of abstracted descriptors and controllers can constrain the artificial neural network-based polyline simplification according to polyline shape characteristics and simplification principles. Numéro de notice : A2022-479 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1080/15230406.2021.2013944 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2013944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100885
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 313 - 337[article]Validation of regional and global ionosphere maps from GNSS measurements versus IRI2016 during different magnetic activity / Ahmed Sedeek in Journal of applied geodesy, vol 16 n° 3 (July 2022)
![]()
[article]
Titre : Validation of regional and global ionosphere maps from GNSS measurements versus IRI2016 during different magnetic activity Type de document : Article/Communication Auteurs : Ahmed Sedeek, Auteur Année de publication : 2022 Article en page(s) : pp 229 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Afrique du nord
[Termes IGN] données GNSS
[Termes IGN] harmonique sphérique
[Termes IGN] International Reference Ionosphere
[Termes IGN] interpolation
[Termes IGN] Matlab
[Termes IGN] modèle ionosphérique
[Termes IGN] station GNSS
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) This manuscript explores the divergence of the Vertical Total Electron Content (VTEC) estimated from Global Navigation Satellite System (GNSS) measurements using global, regional, and International Reference Ionosphere (IRI) models over low to high latitude regions during various magnetic activity. The VTEC is estimated using a territorial network consisting of 7 GNSS stations in Egypt and 10 GNSS stations from the International GNSS Service (IGS) Global network. The impact of magnetic activity on VTEC is investigated. Due to the deficiency of IGS receivers in north Africa and the shortage of GNSS measurements, an extra high interpolation is done to cover the deficit of data over North Africa. A MATLAB code was created to produce VTEC maps for Egypt utilizing a territorial network contrasted with global maps of VTEC, which are delivered by the Center for Orbit Determination in Europe (CODE). Thus we can have genuine VTEC maps estimated from actual GNSS measurements over any region of North Africa. A Spherical Harmonics Expansion (SHE) equation was modelled using MATLAB and called Local VTEC Model (LVTECM) to estimate VTEC values using observations of dual-frequency GNSS receivers. The VTEC calculated from GNSS measurement using LVTECM is compared with CODE VTEC results and IRI-2016 VTEC model results. The analysis of outcomes demonstrates a good convergence between VTEC from CODE and estimated from LVTECM. A strong correlation between LVTECM and CODE reaches about 96 % and 92 % in high and low magnetic activity, respectively. The most extreme contrasts are found to be 2.5 TECu and 1.3 TECu at high and low magnetic activity, respectively. The maximum discrepancies between LVTECM and IRI-2016 are 9.7 TECu and 2.3 TECu at a high and low magnetic activity. Variation in VTEC due to magnetic activity ranges from 1–5 TECu in moderate magnetic activity. The estimated VTEC from the regional network shows a 95 % correlation between the estimated VTEC from LVTECM and CODE with a maximum difference of 5.9 TECu. Numéro de notice : A2022-495 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0046 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.1515/jag-2021-0046 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100985
in Journal of applied geodesy > vol 16 n° 3 (July 2022) . - pp 229 - 240[article]Production of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey / Faruk Yildirim in Geocarto international, vol 37 n° 8 ([22/06/2022])
![]()
[article]
Titre : Production of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey Type de document : Article/Communication Auteurs : Faruk Yildirim, Auteur ; Fatih Kadi, Auteur Année de publication : 2022 Article en page(s) : pp 2175 - 2197 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte forestière
[Termes IGN] forêt
[Termes IGN] interface graphique
[Termes IGN] Matlab
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] recherche du chemin optimal, algorithme de
[Termes IGN] route
[Termes IGN] TurquieRésumé : (auteur) Forest roads are a basic necessity in forestry policies and should be planned by considering many factors. This study aims to generate optimum forest road routes and to compare them with current forest roads. First, FRNSM has been produced according to AHP, using nine factors for the study area. Then, risk statuses of the current forest roads are examined. According to results, 35% of the total forest road has high risk. A MATLAB-GUI based an application using optimal path algorithm developed for the second stage of the study has been produced. Using this application, optimum forest road routes have been produced for 11 pilot areas selected from the region. Generated routes have been compared with current forest roads in the region. It has been observed that generated routes in all areas are more suitable than current forest roads in terms of total length and average risk of suitability. Numéro de notice : A2022-504 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1818852 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1080/10106049.2020.1818852 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101025
in Geocarto international > vol 37 n° 8 [22/06/2022] . - pp 2175 - 2197[article]Constraint-based evaluation of map images generalized by deep learning / Azelle Courtial in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
![]()
[article]
Titre : Constraint-based evaluation of map images generalized by deep learning Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya
, Auteur ; Xiang Zhang, Auteur
Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] connexité (graphes)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] montagne
[Termes IGN] programmation par contraintes
[Termes IGN] qualité des données
[Termes IGN] rendu réaliste
[Termes IGN] route
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Deep learning techniques have recently been experimented for map generalization. Although promising, these experiments raise new problems regarding the evaluation of the output images. Traditional map generalization evaluation cannot directly be applied to the results in a raster format. Additionally, the internal evaluation used by deep learning models is mostly based on the realism of images and the accuracy of pixels, and none of these criteria is sufficient to evaluate a generalization process. Finally, deep learning processes tend to hide the causal mechanisms and do not always guarantee a result that follows cartographic principles. In this article, we propose a method to adapt constraint-based evaluation to the images generated by deep learning models. We focus on the use case of mountain road generalization, and detail seven raster-based constraints, namely, clutter, coalescence reduction, smoothness, position preservation, road connectivity preservation, noise absence, and color realism constraints. These constraints can contribute to current studies on deep learning-based map generalization, as they can help guide the learning process, compare different models, validate these models, and identify remaining problems in the output images. They can also be used to assess the quality of training examples. Numéro de notice : A2022-449 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-022-00104-2 Date de publication en ligne : 07/05/2022 En ligne : http://dx.doi.org/10.1007/s41651-022-00104-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100646
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022) . - n° 13[article]Efficient calculation of distance transform on discrete global grid systems / Meysam Kazemi in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
PermalinkGIS and machine learning for analysing influencing factors of bushfires using 40-year spatio-temporal bushfire data / Wanqin He in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
PermalinkA GIS-based approach for identification of optimum runoff harvesting sites and storage estimation: a study from Subarnarekha-Kangsabati Interfluve, India / Manas Karmakar in Applied geomatics, vol 14 n° 2 (June 2022)
PermalinkNarrative cartography with knowledge graphs / Gengchen Mai in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
PermalinkCity3D: Large-scale building reconstruction from airborne LiDAR point clouds / Jin Huang in Remote sensing, vol 14 n° 9 (May-1 2022)
PermalinkMulti-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkPerformance analysis of low-cost GNSS stations for structural health monitoring of civil engineering structures / Nicolas Manzini in Structure and Infrastructure Engineering, vol 18 n° 5 ([01/05/2022])
PermalinkSwipe versus multiple view: a comprehensive analysis using eye-tracking to evaluate user interaction with web maps / Stanislav Popelka in Cartography and Geographic Information Science, vol 49 n° 3 (May 2022)
PermalinkClustering with implicit constraints: A novel approach to housing market segmentation / Xiaoqi Zhang in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkEnriching the metadata of map images: a deep learning approach with GIS-based data augmentation / Yingjie Hu in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
Permalink