Descripteur



Etendre la recherche sur niveau(x) vers le bas
Optimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam / Vu Anh Tuan in European journal of remote sensing, vol 54 n° 1 (2021)
![]()
[article]
Titre : Optimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam Type de document : Article/Communication Auteurs : Vu Anh Tuan, Auteur ; Nguyen Hong Quang, Auteur ; le Thi Thu Hang, Auteur Année de publication : 2021 Article en page(s) : pp 13 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] crue
[Termes descripteurs IGN] image ALOS
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] inondation
[Termes descripteurs IGN] Mekong (fleuve)
[Termes descripteurs IGN] optimisation spatiale
[Termes descripteurs IGN] surveillance hydrologique
[Termes descripteurs IGN] Viet NamRésumé : (auteur) One major characteristic of floods is flood extent. Information on this characteristic is indispensable for flood monitoring. Recently, synthetic aperture radar (SAR) data have been increasing in quality and quantity. This allows more flood studies conducted over large areas regardless of cloud and weather conditions and provides advantages including clear surface water classification based on SAR scattering mechanisms for low values (open water) and high values (inundated vegetation, etc.). However, challenges remain due to sources of uncertainties, such as atmospheric disturbances and vegetation masking parts of water surfaces. Therefore, in this study, we aim to optimize flood mapping processes on flooded vegetation that generated high-value pixels based on a SAR scattering mechanism called double bounce that classifies vegetative flooded water in L-band SAR images. This optimization is nearly impossible using Sentinel-1 scenes. Backscattering of time-series Sentinel-1 and ALOS-2 images acquired for the 2018 and 2019 flood season was analysed, thresholded and hybridized for flood mapping of a study site in the Tam Nong district of the Dong Thap Province of Vietnam. We found that the accuracy of SAR flood maps was improved compared to ground truth data when the SAR-extracted vegetative-flooded plains were considered flooded. Numéro de notice : A2021-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/22797254.2020.1859340 date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/22797254.2020.1859340 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97015
in European journal of remote sensing > vol 54 n° 1 (2021) . - pp 13 - 28[article]Impact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Impact of forest disturbance on InSAR surface displacement time series Type de document : Article/Communication Auteurs : Paula M. Bürgi, Auteur ; Rowena B. Lohman, Auteur Année de publication : 2021 Article en page(s) : pp 128 - 138 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] détection du signal
[Termes descripteurs IGN] erreur de phase
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] image ALOS
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] retard ionosphèrique
[Termes descripteurs IGN] retard troposphérique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] Sumatra
[Termes descripteurs IGN] surveillance géologiqueRésumé : (auteur) As interferometric synthetic aperture radar (InSAR) data improve in their global coverage and temporal sampling, studies of ground deformation using InSAR are becoming feasible even in heavily vegetated regions such as the American Pacific Northwest (PNW) and Sumatra. However, ongoing forest disturbance due to logging, wildfires, or disease can introduce time-variable signals which could be misinterpreted as ground displacements. This study constrains the error introduced into InSAR time series in the presence of time-variable forest disturbance using synthetic data. For satellite platforms with randomly distributed orbital positions in time (e.g., Sentinel-1), mid-time series forest disturbance results in random error on the order of 0.2 and 10 cm/year for 1-year secular and time-variable velocities, respectively. If the orbital positions are not randomly distributed in time (e.g., ALOS-1), a biased error on the order of 10 cm/year is introduced to the inferred secular velocity. A time series using real ALOS-1 data near Eugene, OR, USA, shows agreement with the bias estimated by synthetic models. Mitigation of time-variable land cover change effects can be achieved if their timing is known, either through independent observations of surface properties (e.g., Landsat/Sentinel-2) or through the use of more computationally expensive, nonlinear inversions with additional terms for the timing of height changes. Inclusion of these additional terms reduces the potential for misinterpretation of InSAR signals associated with land surface change as ground deformation. Numéro de notice : A2021-032 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992938 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992938 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96727
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 128 - 138[article]L-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia / Bambang H Trisasongko in Geocarto international, vol 35 n° 12 ([01/09/2020])
![]()
[article]
Titre : L-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia Type de document : Article/Communication Auteurs : Bambang H Trisasongko, Auteur ; David J. Paull, Auteur Année de publication : 2020 Article en page(s) : pp 1327 - 1342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] arbre hors forêt
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] carbone
[Termes descripteurs IGN] données allométriques
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] Java (île de)Résumé : (auteur) This article discusses an experiment on the estimation of rubber tree biomass using L-band Synthetic Aperture Radar (SAR), to support recent efforts to include trees outside forest in global biomass and carbon accounting. We noted that date of acquisition is important, but certainly the selection of allometric equation serving as the reference data was paramount. Similarly, choosing a proper form of fully polarimetric data was instrumental, although this requires validation in different environmental settings. As expected, modern data mining approaches consistently delivered high accuracy. Extreme learning machine yielded the best estimate in terms of R2 (0.98) and RMSE (1.88 Mg/ha); nonetheless, it also delivered a slight negative estimation. In this case, we found that a variant of random forest produced an outcome without any negative estimation. This research suggests that estimated biomass or carbon information from rubber plantations would be an invaluable candidate for the improvement of global biomass data. Numéro de notice : A2020-480 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1573855 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1573855 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95630
in Geocarto international > vol 35 n° 12 [01/09/2020] . - pp 1327 - 1342[article]Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method / Yuedong Wang in Journal of geodesy, vol 94 n° 5 (May 2020)
![]()
[article]
Titre : Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method Type de document : Article/Communication Auteurs : Yuedong Wang, Auteur ; Zefa Yang, Auteur ; Zhiwei Li, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse des risques
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] déformation de la croute terrestre
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] échantillonnage de données
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] mine de charbon
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance géologiqueRésumé : (auteur) Interferometric synthetic aperture radar (InSAR) technology can be used to observe high spatial resolution one-dimensional (1-D) deformation along the line-of-sight direction from a single-track synthetic aperture radar (SAR) dataset. With the aid of multi-track InSAR data or a prior model, InSAR can be extended to infer 3-D deformation information, but the temporal resolution is generally limited. This paper presents an InSAR-based method to retrieve high spatio-temporal resolution 3-D displacements over mining areas (hereafter referred to as the MTI-based method). The core idea of the proposed method is to enhance the temporal resolution of the time-series 3-D displacement estimates by fusing multi-track InSAR observations and a prior model. Firstly, we retrieve high spatial resolution 3-D mining displacements from single-track InSAR 1-D deformation observations, with the assistance of the prior deformation model. By applying this approach to multi-track InSAR data over the same area, we obtain much denser 3-D mining displacement samples in time than those derived from a single-track InSAR dataset. Secondly, we propose a generalized weighted least-squares method to integrate the denser 3-D displacement samples, to solve the high temporal resolution 3-D mining displacements, in which the rank deficiency needs to be tackled. Finally, time-series 3-D mining displacements at the chronological dates of all the available multi-track SAR images are estimated. The Yungang coal mining area of China was selected to test the proposed method using two adjacent-track ALOS PALSAR-1 datasets. Compared with the single-track InSAR-derived results, the proposed method not only significantly improves the temporal resolution of the monitoring results by 42.6%, obtaining more detailed 3-D displacements, but it also provides important data support for understanding and modeling the distinctive kinematics of mining deformation and assessing mining-related geohazards. What is more, the core idea of the proposed method will be beneficial to high spatio-temporal resolution 3-D deformation estimation in other geophysical processes. Numéro de notice : A2020-239 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01374-8 date de publication en ligne : 23/04/2020 En ligne : https://doi.org/10.1007/s00190-020-01374-8 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94992
in Journal of geodesy > vol 94 n° 5 (May 2020)[article]Soil moisture estimation with SVR and data augmentation based on alpha approximation method / Wei Xu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : Soil moisture estimation with SVR and data augmentation based on alpha approximation method Type de document : Article/Communication Auteurs : Wei Xu, Auteur ; Zhaoxu Zhang, Auteur ; Qiming Qin, Auteur Année de publication : 2020 Article en page(s) : pp 3190 - 3201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] approximation
[Termes descripteurs IGN] erreur moyenne quadratique
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image ALOS
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] irrigation
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] surveillance agricoleRésumé : (auteur) Soil moisture content is an important parameter in hydrological, meteorological, and agricultural applications. Balenzano et al. proposed the alpha approximation method in 2011 for solving some complex issues during the retrieval of soil moisture over agricultural crops with synthetic aperture radar data. However, determining the constraints and solving the underdetermined system of equations in this method add new challenges. Considering the questions of constraints and underdetermined system of equations, the alpha approximation method is used to augment the measured data, and can avoid solving the underdetermined system of equations with constraints directly. Then, these data are applied in a support vector regression machine for soil moisture estimation. It is found that when an optimal model is determined, the method proposed in this article is superior to the direct use of the alpha approximation method, and the root-mean-squared error (RMSE) decreased from 0.0775 to 0.0339 and R 2 increased from 0.0467 to 0.6491. In addition, the method obtained a good result from a data set collected that included a different growing period of crops by changing the standardized method from StandardScaler to Scale , where the RMSE is 0.0501 and R 2 is 0.3204. This indicates the good generalization capability of this method. In conclusion, the proposed method solves the two questions effectively and provides a potential way for long-time or large-scale soil moisture monitoring with much less in situ measurements. Numéro de notice : A2020-235 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950321 date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950321 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94981
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3190 - 3201[article]Extracting impervious surfaces from full polarimetric SAR images in different urban areas / Sara Attarchi in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
PermalinkEstimation of variance and spatial correlation width for fine-scale measurement error in digital elevation model / Mikhail L. Uss in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkComplex deformation at shallow depth during the 30 October 2016 Mw6.5 Norcia earthquake: interferencebetween tectonic and gravity processes? / Arthur Delorme in Tectonics, vol 39 n° 2 (February 2020)
![]()
PermalinkLandslide displacement mapping based on ALOS-2/PALSAR-2 data using image correlation techniques and SAR interferometry: application to the Hell-Bourg landslide (Salazie Circle, La Réunion Island) / Daniel Raucoules in Geocarto international, vol 35 n° 2 ([01/02/2020])
PermalinkSome thoughts on measuring earthquake deformation using optical imagery / Min Huang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
PermalinkThe "Incense Road" from Petra to Gaza: an analysis using GIS and Cost functions / Motti Zohar in International journal of geographical information science IJGIS, vol 34 n° 2 (February 2020)
PermalinkArtificial neural network models by ALOS PALSAR data for aboveground stand carbon predictions of pure beech stands: a case study from northern of Turkey / Alkan Günlü in Geocarto international, Vol 35 n° 1 ([02/01/2020])
PermalinkRegional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification / Viktor Myroniuk in Remote sensing, vol 12 n° 1 (January 2020)
PermalinkIdentification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
PermalinkComparative analysis of the accuracy of surface soil moisture estimation from the C- and L-bands / Mohammad El Hajj in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
Permalink