Descripteur
Documents disponibles dans cette catégorie (144)



Etendre la recherche sur niveau(x) vers le bas
Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak / A.P. Rudke in Remote sensing of environment, vol 289 (May 2003)
![]()
[article]
Titre : Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak Type de document : Article/Communication Auteurs : A.P. Rudke, Auteur ; J.A. Martins, Auteur ; R. Hallak, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] correction atmosphérique
[Termes IGN] dioxyde d'azote
[Termes IGN] épidémie
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] image Terra-MODIS
[Termes IGN] pollution atmosphérique
[Termes IGN] qualité de l'air
[Termes IGN] Sao PauloRésumé : (auteur) Atmospheric pollutant data retrieved through satellite sensors are continually used to assess changes in air quality in the lower atmosphere. During the COVID-19 pandemic, several studies started to use satellite measurements to evaluate changes in air quality in many different regions worldwide. However, although satellite data is continuously validated, it is known that its accuracy may vary between monitored areas, requiring regionalized quality assessments. Thus, this study aimed to evaluate whether satellites could measure changes in the air quality of the state of São Paulo, Brazil, during the COVID-19 outbreak; and to verify the relationship between satellite-based data [Tropospheric NO2 column density and Aerosol Optical Depth (AOD)] and ground-based concentrations [NO2 and particulate material (PM; coarse: PM10 and fine: PM2.5)]. For this purpose, tropospheric NO2 obtained from the TROPOMI sensor and AOD retrieved from MODIS sensor data by using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm were compared with concentrations obtained from 50 automatic ground monitoring stations. The results showed low correlations between PM and AOD. For PM10, most stations showed correlations lower than 0.2, which were not significant. The results for PM2.5 were similar, but some stations showed good correlations for specific periods (before or during the COVID-19 outbreak). Satellite-based Tropospheric NO2 proved to be a good predictor for NO2 concentrations at ground level. Considering all stations with NO2 measurements, correlations >0.6 were observed, reaching 0.8 for specific stations and periods. In general, it was observed that regions with a more industrialized profile had the best correlations, in contrast with rural areas. In addition, it was observed about 57% reductions in tropospheric NO2 throughout the state of São Paulo during the COVID-19 outbreak. Variations in air pollutants were linked to the region economic vocation, since there were reductions in industrialized areas (at least 50% of the industrialized areas showed >20% decrease in NO2) and increases in areas with farming and livestock characteristics (about 70% of those areas showed increase in NO2). Our results demonstrate that Tropospheric NO2 column densities can serve as good predictors of NO2 concentrations at ground level. For MAIAC-AOD, a weak relationship was observed, requiring the evaluation of other possible predictors to describe the relationship with PM. Thus, it is concluded that regionalized assessment of satellite data accuracy is essential for assertive estimates on a regional/local level. Good quality information retrieved at specific polluted areas does not assure a worldwide use of remote sensor data. Numéro de notice : A2023-170 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2023.113514 Date de publication en ligne : 21/02/2023 En ligne : https://doi.org/10.1016/j.rse.2023.113514 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102930
in Remote sensing of environment > vol 289 (May 2003) . - n° 113514[article]Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil / Adrián Pascual in Ecological Informatics, vol 70 (September 2022)
![]()
[article]
Titre : Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil Type de document : Article/Communication Auteurs : Adrián Pascual, Auteur ; Frederico Tupinambá-Simões, Auteur ; Tiago de Conto, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte forestière
[Termes IGN] Eucalyptus (genre)
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] incertitude des données
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Mato Grosso
[Termes IGN] modèle numérique de surface de la canopée
[Vedettes matières IGN] Inventaire forestierMots-clés libres : E. urograndis E. urophylla x E. grandis, E. urophylla and E. camaldulensis x E. grandis Résumé : (auteur) The global monitoring of forest structure worldwide is increasingly being supported by refined and enhanced satellite mission datasets. Forest canopy height is a global metric to characterise and monitor dynamics in forest ecosystems worldwide. Satellite mapping missions as NASA's Global Ecosystem Dynamics Investigation (GEDI) are creating opportunities to refine global forest canopy height models adding forest structural information to time-series satellite imagery. A recent global canopy height model presented by Lang et al., (2022) using GEDI and 10-m Sentinel-2 and the map from Potapov et al., (2020) using GEDI and Landsat are both tested in this study using multi-temporal tree-level data collected over eucalypt plantations in Brazil. Our results at plot-level showed Lang et al., (2022)’s estimates of canopy height came short compared to 2020 maximum and mean tree height records in the plots, 7.6 and 3.6 m, respectively, but adding CHM standard deviation improves the agreement of ground records for maximum tree height. Higher errors were computed for the plots in 2019 using the Potapov's 30-m CHM: 14.2 and 9.5 m, respectively. Averaged stand values were more similar between the three sources tested. We report improvement from the 30-m CHM to the 10-m, but still height saturation problems were observed when accounting for height differences in tall eucalypt trees. As more global products for forest height and biomass are becoming available to users, more validation exercises as presented in this study are needed to assess the suitability of CHM products to forestry needs, and facilitate the uptake and actionability of the next generation of global height and biomass products. We provide recommendations and insights on the use of GEDI laser data for global mapping and on the potential of commercial forestry areas to benchmark the accuracy of satellite mapping missions focusing on tree height estimation in the tropics. Numéro de notice : A2022-615 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ecoinf.2022.101748 En ligne : https://doi.org/10.1016/j.ecoinf.2022.101748 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101370
in Ecological Informatics > vol 70 (September 2022)[article]Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method / Juan Vicente Liendro Moncada in Geocarto international, Vol 37 n° 17 ([20/08/2022])
![]()
[article]
Titre : Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method Type de document : Article/Communication Auteurs : Juan Vicente Liendro Moncada, Auteur ; Tonny José Araújo da Silva, Auteur ; Jefferson Vieira José, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 5133 - 5149 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] carte thématique
[Termes IGN] corrélation
[Termes IGN] données météorologiques
[Termes IGN] évapotranspiration
[Termes IGN] Gossypium (genre)
[Termes IGN] GRASS
[Termes IGN] image Landsat-8
[Termes IGN] Mato Grosso
[Termes IGN] modèle de Monteith
[Termes IGN] phénologie
[Termes IGN] QGIS
[Termes IGN] régression logistique
[Termes IGN] système d'information géographiqueRésumé : (auteur) The objective was to compare the evapotranspiration of cotton (Gossypium sp. L.) estimated by the SEBAL model and the FAO-56 method, throughout the phenological cycle of the plant on eight fields located in the upper area of the Rio das Mortes basin, State of Mato Grosso—Brazil. Images from the Landsat 8 satellite were used under the Geographic Information Systems environment through the capabilities of the QGIS 3.6.2 and GRASS 7.6.1 software. The reference evapotranspiration was determined by the FAO Penman–Monteith method implementing the Ref-ET software and data from the Campo Verde meteorological station of INMET—Brazil. The R software was applied to the statistical analyses of correlation and regression. The dataset of the available stages of the cotton phenological cycle shows a strong positive correlation, with approximately 68% of the evapotranspiration variation of the SEBAL model related to the estimates of the FAO-56 method. Numéro de notice : A2022-700 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920633 Date de publication en ligne : 06/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101559
in Geocarto international > Vol 37 n° 17 [20/08/2022] . - pp 5133 - 5149[article]Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs / Douglas Stefanello Facco in Geocarto international, vol 37 n° 16 ([15/08/2022])
![]()
[article]
Titre : Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs Type de document : Article/Communication Auteurs : Douglas Stefanello Facco, Auteur ; Laurindo Antonio Guasselli, Auteur ; Luis Fernando Chimelo Ruiz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4762 - 4783 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] bande spectrale
[Termes IGN] Brésil
[Termes IGN] centrale hydroélectrique
[Termes IGN] classification bayesienne
[Termes IGN] classification dirigée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-OLI
[Termes IGN] segmentation d'image
[Termes IGN] turbidité des eauxRésumé : (auteur) Our goal is to compare the performance of Classification and Regression Tree, Naive Bayes and Random Forest algorithms, from supervised image classification, and approaches on Pixel-Based Image analysis (PBIA) and Geographic Object-Based Image Analysis (GEOBIA), to classify turbidity in reservoirs. Tod do so, we use Landsat 8 image and bands and spectral indices, as predictive parameters, as well as the classification algorithms based on PBIA and GEOBIA. The Brazilian Itaipu reservoir was adopted, as a case study. Our results show that the RF classifier obtained the highest accuracy in both classification approaches, followed by CART and NB. The KA and OA indices of the GEOBIA classifications were superior to the PBIA classifications in both algorithms. This study contributes with an approach to quickly and accurately delineating turbidity spectral limits in reservoirs. Numéro de notice : A2022-668 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1899302 Date de publication en ligne : 22/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1899302 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101519
in Geocarto international > vol 37 n° 16 [15/08/2022] . - pp 4762 - 4783[article]Measuring COVID-19 vulnerability for Northeast Brazilian municipalities: Social, economic, and demographic factors based on multiple criteria and spatial analysis / Ciro José Jardim De Figueiredo in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
![]()
[article]
Titre : Measuring COVID-19 vulnerability for Northeast Brazilian municipalities: Social, economic, and demographic factors based on multiple criteria and spatial analysis Type de document : Article/Communication Auteurs : Ciro José Jardim De Figueiredo, Auteur ; Caroline Maria de Miranda Mota, Auteur ; Kaliane Gabriele Dias de Araújo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse multicritère
[Termes IGN] autocorrélation spatiale
[Termes IGN] Brésil
[Termes IGN] densité de population
[Termes IGN] données socio-économiques
[Termes IGN] épidémie
[Termes IGN] maladie virale
[Termes IGN] vulnérabilitéRésumé : (auteur) COVID-19 has brought several harmful consequences to the world from many perspectives, including social, economic, and well-being in addition to health issues. However, these harmful consequences vary in intensity in different regions. Identifying which cities are most vulnerable to COVID-19 and understanding which variables could be associated with the advance of registered cases is a challenge. Therefore, this study explores and builds a spatial decision model to identify the characteristics of the cities that are most vulnerable to COVID-19, taking into account social, economic, demographic, and territorial aspects. Hence, 18 features were separated into the four groups mentioned. We employed a model joining the dominance-based rough set approach to aggregate the features (multiple criteria) and spatial analysis (Moran index, and Getis and Ord) to obtain final results. The results show that the most vulnerable places have characteristics with high population density and poor economic conditions. In addition, we conducted subsequent analysis to validate the results. The case was developed in the northeast region of Brazil. Numéro de notice : A2022-646 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11080449 Date de publication en ligne : 16/08/2022 En ligne : https://doi.org/10.3390/ijgi11080449 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101462
in ISPRS International journal of geo-information > vol 11 n° 8 (August 2022) . - n° 449[article]Determination of vertical land movements through the integration of tide gauge observations and satellite altimetry data at the Brazilian Vertical Datum from 2002 to 2015 / Samoel Gehl in Boletim de Ciências Geodésicas, vol 28 n° 2 ([01/07/2022])
PermalinkThe effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events / Sidgley Camargo de Andrade in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
PermalinkClassification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil / Aliny Aparecida Dos Reis in Geocarto international, vol 37 n° 5 ([01/03/2022])
PermalinkOrthometric, normal and geoid heights in the context of the Brazilian altimetric network / Danilos Fernandes de Medeiros in Boletim de Ciências Geodésicas, vol 28 n° 1 ([01/03/2022])
PermalinkMonthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning / Feng Zhao in Remote sensing of environment, vol 269 (February 2022)
PermalinkVariable selection for estimating individual tree height using genetic algorithm and random forest / Evandro Nunes Miranda in Forest ecology and management, vol 504 (January-15 2022)
PermalinkBuilding a collaborative online catalogue of geoportals in Brazil / Eduardo Silverio da Silva in Boletim de Ciências Geodésicas, vol 27 n° 4 ([01/12/2021])
PermalinkThe use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space / Renato César Dos santos in Applied geomatics, vol 13 n° 4 (December 2021)
PermalinkAutomatic tuning of segmentation parameters for tree crown delineation with VHR imagery / Camile Sothe in Geocarto international, vol 36 n° 19 ([01/11/2021])
PermalinkA CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms / Ibrahim Fayad in Remote sensing of environment, vol 265 (November 2021)
Permalink