Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > géodésie spatiale > traitement de données GNSS > résolution d'ambiguïté
résolution d'ambiguïtéVoir aussi |
Documents disponibles dans cette catégorie (162)



Etendre la recherche sur niveau(x) vers le bas
GNSS best integer equivariant estimation combining with integer least squares estimation: an integrated ambiguity resolution method with optimal integer aperture test / Liye Ma in GPS solutions, vol 26 n° 4 (October 2022)
![]()
[article]
Titre : GNSS best integer equivariant estimation combining with integer least squares estimation: an integrated ambiguity resolution method with optimal integer aperture test Type de document : Article/Communication Auteurs : Liye Ma, Auteur ; Yidong Lou, Auteur ; Liguo Lu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] méthode des moindres carrés
[Termes IGN] phase GNSS
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) Accurate and reliable carrier phase ambiguity resolution (AR) is the key to global navigation satellite system (GNSS) high-precision navigation and positioning applications. The integer least squares (ILS) estimation and the best integer equivariant (BIE) estimation are two widely used AR method, with the former considered to have the highest success rate and the latter to be optimal in the minimum mean squared error (MSE) sense. We analyzed three key issues of applying the BIE method in detail, including the use boundary of BIE, the number of candidates to be involved, and the weight determination among ambiguity candidates. It has been demonstrated that the BIE estimator is superior to ILS estimator from an overall perspective, but not always the best in each specific epoch. Therefore, we recommend constructing an integrated ambiguity resolution scheme that combines BIE with ILS, and we propose to adopt the optimal integer aperture (OIA) test as a criterion to distinguish the two. Moreover, a new criterion referred to the OIA test is proposed to determine the number of candidates involved in the BIE estimator. We also attempt to add the quadratic forms of baseline residuals into the weight function of BIE, aiming to reach a more accurate estimator. Finally, an integrated AR method that combines ILS with BIE and distinguished by the OIA test is proposed, named OIA-BIE. A set of real-measured vehicle data are tested to evaluate its performance, compared to least squares (LS), ILS, and the original BIE. The results show that the positioning accuracy of OIA-BIE is a little better than BIE, better than ILS, and significantly better than LS. Moreover, the average time consumption of ILS, BIE, and OIA-BIE are also evaluated, with 1.15, 14.62, and 3.71 ms, respectively, and OIA-BIE is four times more efficient than BIE. Numéro de notice : A2022-542 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01285-5 Date de publication en ligne : 03/07/2022 En ligne : https://doi.org/10.1007/s10291-022-01285-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101107
in GPS solutions > vol 26 n° 4 (October 2022) . - n° 100[article]Multi-frequency phase-only PPP-RTK model applied to BeiDou data / Pengyu Hou in GPS solutions, vol 26 n° 3 (July 2022)
![]()
[article]
Titre : Multi-frequency phase-only PPP-RTK model applied to BeiDou data Type de document : Article/Communication Auteurs : Pengyu Hou, Auteur ; Baocheng Zhang, Auteur ; Yury V. Yasyukevich, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] ambiguïté entière
[Termes IGN] données BeiDou
[Termes IGN] erreur de phase
[Termes IGN] fréquence multiple
[Termes IGN] modèle de simulation
[Termes IGN] phase GNSS
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] retard ionosphèrique
[Termes IGN] trajet multipleRésumé : (auteur) Typically, navigation software processes global navigation satellite system (GNSS) phase observables along with the code observables to achieve high-precision positioning. However, the unmodeled code-related errors, typically multipath effects, may deteriorate the positioning performance. Such effects are well known for the second generation BeiDou navigation satellite system (BDS-2). To prevent this adverse effect on the state-of-the-art positioning technique, namely integer ambiguity resolution-enabled precise point positioning (PPP-RTK), we propose a multi-frequency phase-only PPP-RTK model. This model excludes the code observables and addresses the rank deficiency problem underlying the phase observation equations at the undifferenced and uncombined level. To verify the model, we collect five-day triple-frequency BDS 30-s data from a network of seven reference stations (about 112 km apart) to estimate the products on the network side. Based on these products, we conduct simulated dynamic positioning at a user station to test the phase-only PPP-RTK model and compare it with the customary code-plus-phase (CPP) model. The results show that the satellite phase biases, existing only at the third frequency, have a precision of better than two centimeters, while the precision of the satellite clock and ionospheric delay is better than eight centimeters. Due to the strong correlation between individual corrections, it is necessary to assess the quality of combined products, including the satellite clock, satellite phase bias and ionospheric delay, the precision of which is several millimeters to two centimeters, which is sufficiently precise for user positioning. Regarding BDS-2 positioning, the time-to-first-fix (TTFF) of the CPP PPP-RTK is 12 epochs, while it is only three epochs for the phase-only PPP-RTK. The reason why the CPP model underperforms the phase-only model is that the BDS-2 data collected are subject to notable code multipath. We show that the code multipath in the third-generation BDS (BDS-3) data is mild, so the CPP PPP-RTK achieves instantaneous centimeter-level positioning with a TTFF of one epoch. The BDS-3 phase-only PPP-RTK obtains virtually the same positioning results, but the TTFF is two epochs. When combining BDS-2 with BDS-3, the TTFF of both models remains unchanged compared to that of the BDS-3 solutions, implying that ambiguity resolution based on the stronger dual-system CPP model is robust to the BDS-2 code multipath. However, the ambiguity-float solution of the CPP PPP-RTK is adversely affected by the code multipath and requires 43 epochs to convergence, while its phase-only counterpart needs 36 epochs. Numéro de notice : A2022-377 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01263-x Date de publication en ligne : 10/05/2022 En ligne : https://doi.org/10.1007/s10291-022-01263-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100637
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 76[article]Regularized integer least-squares estimation: Tikhonov’s regularization in a weak GNSS model / Zemin Wu in Journal of geodesy, vol 96 n° 4 (April 2022)
![]()
[article]
Titre : Regularized integer least-squares estimation: Tikhonov’s regularization in a weak GNSS model Type de document : Article/Communication Auteurs : Zemin Wu, Auteur ; Shaofeng Bian, Auteur Année de publication : 2022 Article en page(s) : n° 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] affaiblissement géométrique de la précision
[Termes IGN] méthode des moindres carrés
[Termes IGN] phase GNSS
[Termes IGN] positionnement par GNSS
[Termes IGN] régularisation de Tychonoff
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) The strength of the GNSS precise positioning model degrades in cases of a lack of visible satellites, poor satellite geometry or uneliminated atmospheric delays. The least-squares solution to a weak GNSS model may be unreliable due to a large mean squared error (MSE). Recent studies have reported that Tikhonov’s regularization can decrease the solution’s MSE and improve the success rate of integer ambiguity resolution (IAR), as long as the regularization matrix (or parameter) is properly selected. However, there are two aspects that remain unclear: (i) the optimal regularization matrix to minimize the MSE and (ii) the IAR performance of the regularization method. This contribution focuses on these two issues. First, the “optimal” Tikhonov’s regularization matrix is derived conditioned on an assumption of prior information of the ambiguity. Second, the regularized integer least-squares (regularized ILS) method is compared with the integer least-squares (ILS) method in view of lattice theory. Theoretical analysis shows that regularized ILS can increase the upper and lower bounds of the success rate and reduce the upper bound of the LLL reduction complexity and the upper bound of the search complexity. Experimental assessment based on real observed GPS data further demonstrates that regularized ILS (i) alleviates the LLL reduction complexity, (ii) reduces the computational complexity of determinate-region ambiguity search, and (iii) improves the ambiguity fixing success rate. Numéro de notice : A2022-262 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01585-7 Date de publication en ligne : 28/03/2022 En ligne : https://doi.org/10.1007/s00190-021-01585-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100251
in Journal of geodesy > vol 96 n° 4 (April 2022) . - n° 22[article]Calibrating GNSS phase biases with onboard observations of low earth orbit satellites / Xingxing Li in Journal of geodesy, vol 96 n° 2 (February 2022)
![]()
[article]
Titre : Calibrating GNSS phase biases with onboard observations of low earth orbit satellites Type de document : Article/Communication Auteurs : Xingxing Li, Auteur ; Jiaqi Wu, Auteur ; Xin Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 8 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] bande K
[Termes IGN] erreur de phase
[Termes IGN] erreur systématique
[Termes IGN] étalonnage des données
[Termes IGN] orbite basse
[Termes IGN] phase GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) recent years, numerous low earth orbit (LEO) satellites have been launched for different scientific tasks such as the Earth’s magnetic field, gravity recovering and ocean altimetry. The LEO satellites can cover the ocean area and are less affected by atmospheric delays and multipath errors, which provides new opportunities for calibrating the phase biases of the Global Navigation Satellite System (GNSS). In this contribution, we propose an alternative approach for uncalibrated phase delay (UPD) estimation by making full use of onboard observations of LEO satellites. Stable wide-lane (WL) and narrow-lane (NL) UPDs can be obtained from spaceborne GNSS observations and agree well with the UPD products derived from 106 IGS stations. To further verify the feasibility of the proposed method for UPD estimation, zero-difference (ZD) ambiguity resolution (AR) for precise point positioning (PPP) and LEO precise orbit determination (POD) are implemented. After applying the LEO-based UPDs, the averaged convergence time for PPP AR can be reduced to 15.2 min, with an improvement of 24% compared to float solutions. As for LEO AR, the fixing rates of WL and NL ambiguities exceed 98 and 92%, respectively. The accuracies of ambiguity-fixed orbits are validated by comparing with external satellite laser ranging (SLR) and K-band ranging (KBR) observations. Compared to float solutions, the standard deviations (STDs) of SLR residuals can be reduced by 8 ~ 43%, and the KBR residuals of 3.75 mm can be achieved for fixed solutions using LEO-based UPDs, with an improvement of 60%. Although the current UPD results derived from LEO satellites are slightly worse than those of ground-based UPD, it is anticipated that the performance of LEO-based UPD can be further improved in the near future with the rapidly increasing number of LEO satellites and the continuous refinements of the POD method. Numéro de notice : A2022-129 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01600-5 Date de publication en ligne : 31/01/2022 En ligne : https://doi.org/10.1007/s00190-022-01600-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99712
in Journal of geodesy > vol 96 n° 2 (February 2022) . - n° 8[article]GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution / Jianghui Geng in Journal of geodesy, vol 96 n° 2 (February 2022)
![]()
[article]
Titre : GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution Type de document : Article/Communication Auteurs : Jianghui Geng, Auteur ; Qiang Wen, Auteur ; Qiyuan Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données Galileo
[Termes IGN] erreur de phase
[Termes IGN] erreur systématique interfréquence d'horloge
[Termes IGN] fréquence multiple
[Termes IGN] horloge du satellite
[Termes IGN] phase GPS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal GNSS
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) An unwritten rule to resolve GNSS ambiguities in precise point positioning (PPP-AR) is that users should follow faithfully the frequency choices and observable combinations mandated by satellite clock and phase bias providers. Switching to other frequencies of measurements requires that the satellite clocks be converted, albeit in a roundabout way, to agree with the new frequencies of code biases. Satellite phase biases, on the other hand, are prescribed conventionally as wide-lane and narrow-lane combinations, which prevents users from resolving other phase combinations in the case of multi-frequency observables. We therefore develop an approach to compute observable-specific phase biases (phase OSBs) in concert with the legacy, but ambiguity-fixed, satellite clocks to enable PPP-AR over any frequency choices and observable combinations at the user end, i.e., all-frequency PPP-AR. In particular, the phase OSBs on the baseline frequencies (e.g., L1/L2 for GPS and E1/E5a for Galileo) are estimated by decoupling the code OSBs pre-aligned with the satellite clocks; then satellite clocks are re-estimated by holding pre-resolved undifferenced ambiguities and phase OSBs on the baseline frequencies; finally, all third-frequency phase OSBs are determined by introducing the ambiguity-fixed satellite clocks above. We used a global network of multi-frequency GPS/Galileo data over a month to verify this approach. In dual-frequency PPP-AR using GPS L1/L2, L1/L5, Galileo E1/E5a, E1/E5b, E1/E5 and E1/E6 signals, over 95% of wide-lane and narrow-lane ambiguity residuals were within ±0.25 and ±0.15 cycles, respectively, after the code and phase OSB corrections on raw GNSS measurements. As a result, the ambiguity fixing rates reached around 95% in all PPP-AR tests, though it was only the satellite clocks aligned with the GPS L1/L2 and Galileo E1/E5a pseudorange that were applied throughout. We stress that the key to computing such phase OSBs for all-frequency PPP-AR is that the code OSBs have the same bias datum as that of the satellite clocks. Numéro de notice : A2022-135 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01602-3 Date de publication en ligne : 04/02/2022 En ligne : https://doi.org/10.1007/s00190-022-01602-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99740
in Journal of geodesy > vol 96 n° 2 (February 2022) . - n° 11[article]Generating GPS decoupled clock products for precise point positioning with ambiguity resolution / Shuai Liu in Journal of geodesy, vol 96 n° 1 (January 2022)
PermalinkRobust GNSS carrier phase-based position and attitude estimation theory and applications / Daniel Arias Medina (2022)
PermalinkIonospheric corrections tailored to the Galileo High Accuracy Service / Adria Rovira-Garcia in Journal of geodesy, vol 95 n° 12 (December 2021)
PermalinkPositioning performance of GNSS-PPP and PPP-AR methods for determining the vertical displacements / Burak Akpinar in Survey review, vol inconnu ([24/11/2021])
PermalinkPerformance investigation of LAMBDA and bootstrapping methods for PPP narrow-lane ambiguity resolution / Omer Faruk Atiz in Geo-spatial Information Science, vol 24 n° 4 (October 2021)
PermalinkVectorial integer bootstrapping: flexible integer estimation with application to GNSS / Peter J.G. Teunissen in Journal of geodesy, vol 95 n° 9 (September 2021)
PermalinkInteger-estimable FDMA model as an enabler of GLONASS PPP-RTK / Baocheng Zhang in Journal of geodesy, vol 95 n° 8 (August 2021)
PermalinkInteger phase clock method with single-satellite ambiguity fixing and its application in LEO satellite orbit determination / Kai Shao in Acta Geodaetica et Cartographica Sinica, vol 50 n° 4 ([20/04/2021])
PermalinkImpact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergences / Jiang Guo in GPS solutions, vol 25 n° 2 (April 2021)
PermalinkThe Realization and evaluation of PPP ambiguity resolution with INS aiding in marine survey / Zhenqiang Du in Marine geodesy, vol 44 n° 2 (March 2021)
Permalink