Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > accentuation d'image > amélioration du contraste > déconvolution
déconvolutionVoir aussi |
Documents disponibles dans cette catégorie (30)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Deep image deblurring: A survey / Kaihao Zhang in International journal of computer vision, vol 130 n° 9 (September 2022)
[article]
Titre : Deep image deblurring: A survey Type de document : Article/Communication Auteurs : Kaihao Zhang, Auteur ; Wenqi Ren, Auteur ; Wenhan Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2103 - 2130 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déconvolution
[Termes IGN] estimation par noyau
[Termes IGN] filtrage du bruit
[Termes IGN] image floue
[Termes IGN] qualité d'image
[Termes IGN] réseau antagoniste génératif
[Termes IGN] taxinomie
[Termes IGN] vision par ordinateurRésumé : (auteur) Image deblurring is a classic problem in low-level computer vision with the aim to recover a sharp image from a blurred input image. Advances in deep learning have led to significant progress in solving this problem, and a large number of deblurring networks have been proposed. This paper presents a comprehensive and timely survey of recently published deep-learning based image deblurring approaches, aiming to serve the community as a useful literature review. We start by discussing common causes of image blur, introduce benchmark datasets and performance metrics, and summarize different problem formulations. Next, we present a taxonomy of methods using convolutional neural networks (CNN) based on architecture, loss function, and application, offering a detailed review and comparison. In addition, we discuss some domain-specific deblurring applications including face images, text, and stereo image pairs. We conclude by discussing key challenges and future research directions. Numéro de notice : A2022-638 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-022-01633-5 Date de publication en ligne : 25/06/2022 En ligne : https://doi.org/10.1007/s11263-022-01633-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101444
in International journal of computer vision > vol 130 n° 9 (September 2022) . - pp 2103 - 2130[article]Unsupervised multi-level feature extraction for improvement of hyperspectral classification / Qiaoqiao Sun in Remote sensing, vol 13 n° 8 (April-2 2021)
[article]
Titre : Unsupervised multi-level feature extraction for improvement of hyperspectral classification Type de document : Article/Communication Auteurs : Qiaoqiao Sun, Auteur ; Xuefeng Liu, Auteur ; Salah Bourennane, Auteur Année de publication : 2021 Article en page(s) : n° 1602 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] codage
[Termes IGN] convolution (signal)
[Termes IGN] déconvolution
[Termes IGN] échantillonnage d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] observation multiniveauxRésumé : (auteur) Deep learning models have strong abilities in learning features and they have been successfully applied in hyperspectral images (HSIs). However, the training of most deep learning models requires labeled samples and the collection of labeled samples are labor-consuming in HSI. In addition, single-level features from a single layer are usually considered, which may result in the loss of some important information. Using multiple networks to obtain multi-level features is a solution, but at the cost of longer training time and computational complexity. To solve these problems, a novel unsupervised multi-level feature extraction framework that is based on a three dimensional convolutional autoencoder (3D-CAE) is proposed in this paper. The designed 3D-CAE is stacked by fully 3D convolutional layers and 3D deconvolutional layers, which allows for the spectral-spatial information of targets to be mined simultaneously. Besides, the 3D-CAE can be trained in an unsupervised way without involving labeled samples. Moreover, the multi-level features are directly obtained from the encoded layers with different scales and resolutions, which is more efficient than using multiple networks to get them. The effectiveness of the proposed multi-level features is verified on two hyperspectral data sets. The results demonstrate that the proposed method has great promise in unsupervised feature learning and can help us to further improve the hyperspectral classification when compared with single-level features. Numéro de notice : A2021-380 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081602 Date de publication en ligne : 20/04/2021 En ligne : https://doi.org/10.3390/rs13081602 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97628
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1602[article]Télédétection hyperspectrale pour l’identification et la caractérisation de minéraux industriels / Ronan Rialland (2021)
Titre : Télédétection hyperspectrale pour l’identification et la caractérisation de minéraux industriels Type de document : Thèse/HDR Auteurs : Ronan Rialland, Auteur ; Charles Soussen, Auteur ; Rodolphe Marion, Auteur ; V. Carrere, Auteur Editeur : Bures-sur-Yvette : Université Paris-Saclay Année de publication : 2021 Importance : 125 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l’Université Paris-Saclay, Spécialité Traitement du Signal et des ImagesLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bruit (théorie du signal)
[Termes IGN] déconvolution
[Termes IGN] image hyperspectrale
[Termes IGN] logique floue
[Termes IGN] minéral
[Termes IGN] minéralogie
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectance spectrale
[Termes IGN] spectroscopie
[Termes IGN] transfert radiatifIndex. décimale : THESE Thèses et HDR Résumé : (auteur) La télédétection hyperspectrale permet l’étude de larges zones d’intérêt via la caractérisation physico-chimique des surfaces observées. Cette thèse concerne l’identification de minéraux rencontrés sur des sites industriels à partir de leurs spectres de réflectance observés dans le domaine réflectif [400-2500] nm. Un modèle physique paramétrique adapté est proposé pour représenter un spectre comme la somme d’un continuum et de formes spectrales localisées représentant les formes d’absorption. La première contribution est une procédure de déconvolution spectrale pour estimer adaptativement le nombre d’absorptions dans un spectre ainsi que les paramètres associés. Cette procédure est composée de trois étapes : retrait du continuum, pré-estimation des absorptions, ajustement conjoint du continuum et des absorptions. La pré-estimation des absorptions est l’étape clé, où les paramètres (positions, paramètres de formes) des absorptions sont estimés par un algorithme inspiré d’Orthogonal Matching Pursuit. Cette étape fournit des décompositions du spectre pour un nombre variable de formes d’absorption, rendant possible l’utilisation d’un critère de sélection d’ordre pour estimer leur nombre. La deuxième contribution concerne l’identification des minéraux pour des spectres demélanges, inspirée d’une méthode de logique floue et basée sur la comparaison des paramètres estimés avec ceux d’une base de données prédéfinie. Cette solution tient compte des incertitudes d’estimation et des possibles variations des spectres de réflectance des minéraux. Les méthodes proposées sont validées sur de nombreuses données synthétiques et réelles issues de mesures en laboratoire, posant des difficultés d’analyse du fait d’absorptions de formes variées, possiblement superposées, et positionnées sur une plage très étendue de longueurs d’onde. De plus, une validation extensive a été effectuée sur des images hyperspectrales acquises dans le cadre du survol de deux carrières de gypse et de kaolinite. Les minéraux présents sur les sites sont précisément identifiés. Note de contenu : 1- Introduction
2- Spectroscopie et imagerie hyperspectrale pour l’étude des minéraux
3- Modélisation d’un spectre de réflectance de minéral et prise en compte du bruit dans une image hyperspectrale
4- Déconvolution d’un spectre de réflectance de minéral : procédure greedy-AGM
5- Applications de la procédure greedy-AGM
6- Procédure d’identification de minéraux
7- Campagne d’acquisitions et applications
8- Conclusions et perspectivesNuméro de notice : 21705 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Traitement du Signal et des Images : Paris-Saclay : 2021 DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03508396 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100475 A novel deep network and aggregation model for saliency detection / Ye Liang in The Visual Computer, vol 36 n° 9 (September 2020)
[article]
Titre : A novel deep network and aggregation model for saliency detection Type de document : Article/Communication Auteurs : Ye Liang, Auteur ; Hongzhe Liu, Auteur ; Nan Ma, Auteur Année de publication : 2020 Article en page(s) : pp 1883 - 1895 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déconvolution
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] saillanceRésumé : (auteur) Recent deep learning-based methods for saliency detection have proved the effectiveness of integrating features with different scales. They usually design various complex architectures of network, e.g., multiple networks, to explore the multi-scale information of images, which is expensive in computation and memory. Feature maps produced with different subsampling convolutional layers have different spatial resolutions; therefore, they can be used as the multi-scale features to reduce the costs. In this paper, by exploiting the in-network feature hierarchy of convolutional networks, we propose a novel multi-scale network for saliency detection (MSNSD) consisting of three modules, i.e., bottom-up feature extraction, top-down feature connection and multi-scale saliency prediction. Moreover, to further boost the performance of MSNSD, an input image-aware saliency aggregation method is proposed based on the ridge regression, which combines MSNSD with some well-performed handcrafted shallow models. Extensive experiments on several benchmarks show that the proposed MSNSD outperforms the state-of-the-art saliency methods with less computational and memory complexity. Meanwhile, our aggregation method for saliency detection is effective and efficient to combine deep and shallow models and make them complementary to each other. Numéro de notice : A2020-601 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-019-01781-9 Date de publication en ligne : 09/12/2019 En ligne : https://doi.org/10.1007/s00371-019-01781-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95952
in The Visual Computer > vol 36 n° 9 (September 2020) . - pp 1883 - 1895[article]
Titre : Approche bayésienne pour la sélection de modèles : Application à la restauration d’image Type de document : Thèse/HDR Auteurs : Benjamin Harroué, Auteur ; Jean-François Giovannelli, Directeur de thèse ; Marcela Pereyra, Directeur de thèse Editeur : Bordeaux : Université de Bordeaux Année de publication : 2020 Importance : 102 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour obtenir le grade de Docteur en Automatique, Productique, Signal et Image, Ingénierie cognitiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] déconvolution
[Termes IGN] échantillonnage de Gibbs
[Termes IGN] estimation bayesienne
[Termes IGN] fonction harmonique
[Termes IGN] matrice de covariance
[Termes IGN] problème inverse
[Termes IGN] processus gaussien
[Termes IGN] reconstruction d'image
[Termes IGN] restauration d'imageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L’inversion consiste à reconstruire des objets d’intérêt à partir de données acquises au travers d’un système d’observation. Dans ces travaux, nous nous penchons sur la déconvolution d’image. Les données observées constituent une version dégradée de l’objet, altéré par le système (flou et bruit). A cause de la perte d’informations engendrée, le problème devient alors mal conditionné. Une solution est de régulariser dans un cadre bayésien : en se basant sur des modèles, on introduit de l’information a priori sur les inconnues. Se posent alors les questions suivantes : comment comparer les modèles candidats et choisir le meilleur ? Sur quel critère faut-il s’appuyer ? A quelles caractéristiques ou quantités doit-on se fier ? Ces travaux présentent une méthode de comparaison et de sélection automatique de modèles, fondée sur la théorie de la décision bayésienne. La démarche consiste à sélectionner le modèle qui maximise la probabilité a posteriori. Pour calculer ces dernières, on a besoin de connaître une quantité primordiale : l’évidence. Elle s’obtient en marginalisant la loi jointe par rapport aux inconnus : l’image et les hyperparamètres. Les dépendances complexes entre les variables et la grande dimension de l’image rendent le calcul analytique de l’intégrale impossible. On a donc recours à des méthodes numériques. Dans cette première étude, on s’intéresse au cas gaussien circulant. Cela permet, d’une part, d’avoir une expression analytique de l’intégrale sur l’image, et d’autre part, de faciliter la manipulation des matrices de covariances. Plusieurs méthodes sont mises en œuvre comme l’algorithme du Chib couplé à une chaîne de Gibbs, les power posteriors, ou encore la moyenne harmonique. Les méthodes sont ensuite comparées pour déterminer lesquelles sont les plus adéquates au problème de la restauration d’image. Note de contenu : 1- Introduction
2- Sélection de modèles et calcul de l’évidence : état de l’art
3- Sélection de modèles sur observation directe
4- Sélection de modèles sur observation indirecte
5- Sélection de modèles sur données réelles
6- Conclusion : bilan et perspectivesNuméro de notice : 28558 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : thèse de Doctorat : Automatique, Productique, Signal et Image, Ingénierie cognitique : Bordeaux : 2020 nature-HAL : Thèse En ligne : https://tel.archives-ouvertes.fr/tel-03065948/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97587 Conditional random field and deep feature learning for hyperspectral image classification / Fahim Irfan Alam in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)PermalinkObject-based superresolution land-cover mapping from remotely sensed imagery / Yuehong Chen in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)PermalinkUnsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification / Yiting Tao in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)PermalinkSparse bayesian learning-based time-variant deconvolution / Sanyi Yuan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)PermalinkRemote sensing scene classification by unsupervised representation learning / Xiaoqiang Lu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)PermalinkGold – A novel deconvolution algorithm with optimization for waveform LiDAR processing / Tan Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 129 (July 2017)PermalinkTélédétection pour l'observation des surfaces continentales, ch. 6. Méthodes de traitement de données lidar / Clément Mallet (2017)PermalinkAn iterative interpolation deconvolution algorithm for superresolution land cover mapping / Feng Ling in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)PermalinkRemote Sensing Observations of Continental Surfaces, ch. 6. Airborne lidar data processing / Clément Mallet (2016)PermalinkA fast and automatic sparse deconvolution in the presence of outliers / A. Gholami in IEEE Transactions on geoscience and remote sensing, vol 50 n° 10 Tome 2 (October 2012)Permalink