Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > analyse de données > analyse bivariée
analyse bivariéeSynonyme(s)analyse à deux dimensionsVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Network-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
![]()
[article]
Titre : Network-constrained bivariate clustering method for detecting urban black holes and volcanoes Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Zhihui Wu, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1903 - 1929 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse bivariée
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] circulation urbaine
[Termes descripteurs IGN] contour
[Termes descripteurs IGN] détection d'anomalie
[Termes descripteurs IGN] méthode de Monte-Carlo
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] planification urbaine
[Termes descripteurs IGN] réseau de contraintes
[Termes descripteurs IGN] réseau routier
[Termes descripteurs IGN] sécurité publique
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] trajectoire
[Termes descripteurs IGN] trou noir
[Termes descripteurs IGN] voisinage (topologie)
[Termes descripteurs IGN] volcan
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Urban black holes and volcanoes are typical traffic anomalies that are useful for optimizing urban planning and maintaining public safety. It is still challenging to detect arbitrarily shaped urban black holes and volcanoes considering the network constraints with less prior knowledge. This study models urban black holes and volcanoes as bivariate spatial clusters and develops a network-constrained bivariate clustering method for detecting statistically significant urban black holes and volcanoes with irregular shapes. First, an edge-expansion strategy is proposed to construct the network-constrained neighborhoods without the time-consuming calculation of the network distance between each pair of objects. Then, a network-constrained spatial scan statistic is constructed to detect urban black holes and volcanoes, and a multidirectional optimization method is developed to identify arbitrarily shaped urban black holes and volcanoes. Finally, the statistical significance of multiscale urban black holes and volcanoes is evaluated using Monte Carlo simulation. The proposed method is compared with three state-of-the-art methods using both simulated data and Beijing taxicab spatial trajectory data. The comparison shows that the proposed method can detect urban black holes and volcanoes more accurately and completely and is useful for detecting spatiotemporal variations of traffic anomalies. Numéro de notice : A2020-511 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1720027 date de publication en ligne : 27/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1720027 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95665
in International journal of geographical information science IJGIS > vol 34 n° 10 (October 2020) . - pp 1903 - 1929[article]Exploratory bivariate and multivariate geovisualizations of a social vulnerability index / Georgianna Strode in Cartographic perspectives, n° 95 (July 2020)
![]()
[article]
Titre : Exploratory bivariate and multivariate geovisualizations of a social vulnerability index Type de document : Article/Communication Auteurs : Georgianna Strode, Auteur ; Victor Mesev, Auteur ; Susanne Bleisch, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse bivariée
[Termes descripteurs IGN] analyse multivariée
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] carte thématique
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] ethnie
[Termes descripteurs IGN] Floride (Etats-Unis)
[Termes descripteurs IGN] formule d'Euler
[Termes descripteurs IGN] planification stratégique
[Termes descripteurs IGN] prévention
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] signe conventionnel
[Termes descripteurs IGN] sociologie
[Termes descripteurs IGN] vulnérabilité
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) In the United States, the Centers for Disease Control and Prevention (CDC) is the national agency that conducts and supports public health research and practice. Among the CDC’s many achievements is the development of a social vulnerability index (SVI) to aid planners and emergency responders when identifying vulnerable segments of the population, especially during natural hazard events. The index includes an overall social vulnerability ranking as well as four individual themes: socioeconomic, household composition & disability, ethnicity & language, and housing & transportation. This makes the SVI dataset multivariate, but it is typically viewed via maps that show one theme at a time. This paper explores a suite of cartographic techniques that can represent the SVI beyond the univariate view. Specifically, we recommend three techniques: (1) bivariate mapping to illustrate overall vulnerability and population density, (2) multivariate mapping using cartographic glyphs to disaggregate levels of the four vulnerability themes, and (3) visual analytics using Euler diagrams to depict overlap between the vulnerability themes. The CDC’s SVI, and by extension, vulnerability indices in other countries, can be viewed in a variety of cartographic forms that illustrate the location of vulnerable groups of society. Viewing data from various perspectives can facilitate the understanding and analysis of the growing amount and complexity of data. Numéro de notice : A2020-750 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.14714/CP95.1569 date de publication en ligne : 17/03/2020 En ligne : https://doi.org/10.14714/CP95.1569 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96404
in Cartographic perspectives > n° 95 (July 2020) . - 19 p.[article]Simultaneous intensity bias estimation and stripe noise removal in infrared images using the global and local sparsity constraints / Li Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
![]()
[article]
Titre : Simultaneous intensity bias estimation and stripe noise removal in infrared images using the global and local sparsity constraints Type de document : Article/Communication Auteurs : Li Liu, Auteur ; Luping Xu, Auteur ; Houzhang Fang, Auteur Année de publication : 2020 Article en page(s) : pp 1777 - 1789 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse bivariée
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] intensité lumineuse
[Termes descripteurs IGN] interpolation polynomiale
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] programmation par contraintes
[Termes descripteurs IGN] texture d'imageRésumé : (Auteur) Infrared (IR) images are often contaminated by obvious intensity bias and stripes, which severely affect the visual quality and subsequent applications. It is challenging to eliminate simultaneously the mixed nonuniformity noise without blurring the fine-image details in low-textured IR images. In this article, we present a new model for simultaneous intensity bias correction and destriping through introducing two sparsity constraints. One is that model fit on the intensity bias should be as accurate as possible. A bivariate polynomial model is built to characterize the global smoothness of the intensity bias. The other constraint is that the unidirectional variational sparse model can concisely represent the direction characteristic of stripe noise. A computationally efficient numerical algorithm based on split Bregman iteration is used to solve the complex optimization problem. The proposed method is fundamentally different from the existing denoising techniques and simultaneously estimates the sharp image, intensity bias, and stripe components. Significant improvement on image quality is achieved on both simulated and real studies. Both qualitative and quantitative comparisons with the state-of-the-art correction methods demonstrate its superiority. Numéro de notice : A2020-089 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2948601 date de publication en ligne : 18/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2948601 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94663
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1777 - 1789[article]A general method for the classification of forest stands using species composition and vertical and horizontal structure / Miquel de Cáceres in Annals of Forest Science [en ligne], vol 76 n° 2 (June 2019)
![]()
[article]
Titre : A general method for the classification of forest stands using species composition and vertical and horizontal structure Type de document : Article/Communication Auteurs : Miquel de Cáceres, Auteur ; Santiago Martín-Alcón, Auteur ; José Ramon Gonzalez-Olabarria, Auteur ; Lluis Coll, Auteur Année de publication : 2019 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse bivariée
[Termes descripteurs IGN] analyse univariée
[Termes descripteurs IGN] Catalogne (Espagne)
[Termes descripteurs IGN] composition floristique
[Termes descripteurs IGN] diamètre des arbres
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] inventaire forestier étranger (données)
[Termes descripteurs IGN] peuplement forestier
[Termes descripteurs IGN] similitude
[Termes descripteurs IGN] structure d'un peuplement forestier
[Termes descripteurs IGN] typologie forestière
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Context : Forest typologies are useful for many purposes, including forest mapping, assessing habitat quality, studying forest dynamics, or defining sustainable management strategies. Quantitative typologies meant for forestry applications normally focus on horizontal and vertical structure of forest plots as main classification criteria, with species composition often playing a secondary role. The selection of relevant variables is often idiosyncratic and influenced by a priori expectations of the forest types to be distinguished.
Aims : We present a general framework to define forest typologies where the dissimilarity between forest stands is assessed using coefficients that integrate the information of species composition with the univariate distribution of tree diameters or heights or the bivariate distribution of tree diameters and heights.
Methods : We illustrate our proposal with the classification of forest inventory plots in Catalonia (NE Spain), comparing the results obtained using the bivariate distribution of diameters and heights to those obtained using either tree heights or tree diameters only.
Results : The number of subtypes obtained using the tree diameter distribution for the calculation of dissimilarity was often the same as those obtained from the tree height distribution or to those using the bivariate distribution. However, classifications obtained using the three approaches were often different in terms of forest plot membership.
Conclusion : The proposed classification framework is particularly suited to define forest typologies from forest inventory data and allows taking advantage of the bivariate distribution of diameters and heights if both variables are measured. It can provide support to the development of typologies in situations where fine-scale variability of topographic, climatic, and legacy management factors leads to fine-scale variation in forest structure and composition, including uneven-aged and mixed stands.Numéro de notice : A2019-183 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-019-0824-0 date de publication en ligne : 12/04/2019 En ligne : https://doi.org/10.1007/s13595-019-0824-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92704
in Annals of Forest Science [en ligne] > vol 76 n° 2 (June 2019)[article]Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods / Fatemeh Falah in Geocarto international, vol 32 n° 10 (October 2017)
![]()
[article]
Titre : Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods Type de document : Article/Communication Auteurs : Fatemeh Falah, Auteur ; Samira Ghorbani Nejad, Auteur ; Omid Rahmati, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1069 - 1089 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] analyse bivariée
[Termes descripteurs IGN] ArcGIS
[Termes descripteurs IGN] eau souterraine
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] Iran
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] ressources en eau
[Termes descripteurs IGN] système d'information géographiqueRésumé : (Auteur) Groundwater is the most valuable natural resource in arid areas. Therefore, any attempt to investigate potential zones of groundwater for further management of water supply is necessary. Hence, many researchers have worked on this subject all around the world. On the other hand, the Generalized Additive Model (GAM) has been applied to environmental and ecological modelling, but its applicability to other kinds of predictive modelling such as groundwater potential mapping has not yet been investigated. Therefore, the main purpose of this study is to evaluate the performance of GAM model and then its comparison with three popular GIS-based bivariate statistical methods, namely Frequency Ratio (FR), Statistical Index (SI) and Weight-of-Evidence (WOE) for producing groundwater spring potential map (GSPM) in Lorestan Province Iran. To achieve this, out of 6439 existed springs, 4291 spring locations were selected for training phase and the remaining 2147 springs for model evaluation. Next, the thematic layers of 12 effective spring parameters including altitude, plan curvature, slope angle, slope aspect, drainage density, distance from rivers, topographic wetness index, fault density, distance from fault, lithology, soil and land use/land cover were mapped and integrated using the ArcGIS 10.2 software to generate a groundwater prospect map using mentioned approaches. The produced GSPMs were then classified into four distinct groundwater potential zones, namely low, moderate, high and very high classes. The results of the analysis were finally validated using the receiver operating characteristic (ROC) curve technique. The results indicated that out of four models, SI is superior (prediction accuracy of 85.4%) following by FR, GAM and WOE, respectively (prediction accuracy of 83.7, 77 and 76.3%). The result of groundwater spring potential map is helpful as a guide for engineers in water resources management and land use planning in order to select suitable areas to implement development schemes and also government entities. Numéro de notice : A2017-669 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.201 date de publication en ligne : 07/06/2016 En ligne : https://doi.org/10.1080/10106049.2016.1188166 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87144
in Geocarto international > vol 32 n° 10 (October 2017) . - pp 1069 - 1089[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2017101 SL Revue Centre de documentation Revues en salle Disponible Mapping uncertainty from multi-criteria analysis of land development suitability, the case of Howth, Dublin / Bernadette Quinn in Journal of maps, vol 11 n° 3 ([01/07/2015])
PermalinkPermalinkEffect of climatic cycles in Pacific Ocean on mean sea level variations over the Southwest Pacific Ocean and Tasman Sea / Anthony Wiart (2012)
PermalinkComparison of GIS-based methodologies for the landslide susceptibility assessment / P. Magliulo in Geoinformatica, vol 13 n° 3 (September 2009)
PermalinkMapping the results of geographically weighted regression / J. Mennis in Cartographic journal (the), vol 43 n° 2 (July 2006)
PermalinkPermalinkPermalinkHypothesis testing using univariate and bivariate choropleth maps / L.W. Carstensen in American cartographer (the), vol 13 n° 3 (July 1986)
PermalinkBivariate choropleth mapping : the effects of axis scaling / L.W. Carstensen in American cartographer (the), vol 13 n° 1 (April 1986)
PermalinkStatistical cartography at the U.S. Bureau of the Census / R.C. Klove in Annuaire international de cartographie, n° 7 (1967)
Permalink