Descripteur
Termes IGN > 1- Outils - instruments et méthodes > méthode > analyse comparative
analyse comparativeVoir aussi |
Documents disponibles dans cette catégorie (1259)


Etendre la recherche sur niveau(x) vers le bas
Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; David Ellison, Auteur ; Hans Petersson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] changement climatique
[Termes IGN] données spatiotemporelles
[Termes IGN] Finlande
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] précision de l'estimation
[Termes IGN] récolte de bois
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (Auteur) Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Numéro de notice : A2022-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01120-4 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01120-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100013
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 2[article]Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics / Jakob Wernicke in Remote sensing of environment, vol 279 (15 September 2022)
![]()
[article]
Titre : Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics Type de document : Article/Communication Auteurs : Jakob Wernicke, Auteur ; Christian Torsten Seltmann, Auteur ; Ralf Wenzel, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113134 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Allemagne
[Termes IGN] analyse comparative
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] semis de points
[Termes IGN] stratificationRésumé : (auteur) Knowledge about the forest canopy stratification is of essential importance for forest management and planning. Collecting structural information (e.g. natural regeneration) still depends on cost and labour intensive forest inventories with a coarse spatio-temporal resolution. Remote sensing partly overcomes these limitations and particularly active sensors of type light detection and ranging (LiDAR) have proven their great potential of separating forest strata. The applicability of LiDAR metrics for the differentiation of the spruce dominated forest strata in Central Germany has not been tested yet. Additionally, studying the potential of Sentinel-2 metrics for the classification of forest strata is lacking too. In this study, we investigated the capabilities of six different classification approaches for the differentiation of five forest strata that are typical for the study region. Reference data were derived from forest inventory measurements surveyed on a dense 200 × 200 m grid. The six classification approaches were trained with fused and un-fused LiDAR and Sentinel-2 inferred metrics. The classification results were compared using the overall mean accuracy, sensitivity and specificity via receivers operating characteristics of multi-class problems. We were interested in the classification abilities of Sentinel-2 metrics due to the obvious advantages of Sentinel-2 based metrics (free of charge, high spatio-temporal coverage). We assumed that the canopy structure determines the reflection on stand level and thus might facilitate the classification of different canopy strata. Beforehand, it was important to examine the influence of distinctly imbalanced and collinear reference data on the classification results. We found that the Random Forest classifier most accurately separated the five forest strata with a mean overall accuracy of 83.3% (Kappa = 76.2%). These values were achieved from balanced training data and the classification capability was confirmed by classification results from an independent test data set. Fused predictors of active (LiDAR) and passive (Sentinel-2) remote sensing revealed no substantial improvement in the classification accuracy due to the dominant role of LiDAR metrics. Herein, we identified that especially the height variability, top height, portion of LiDAR-returns between 2 m and 10 m and the standard deviation of the return number between the 25th and 50th height percentile, predominately contributed to the classification accuracy. Classification results purely based on Sentinel-2 metrics revealed a rather small overall mean accuracy of 54.7%. The metrics (e.g. median, variance, entropy) were derived from Sentinel-2 indices, covering the visible and near to short infrared spectrum. Variable importance computations unraveled a detectable but minor contribution of MSI, TCG, NDVI to the classification result. Finally, our data driven observations illustrated serious drawbacks associated to data imbalance, collinearity and autocorrelation and presented practical guidance to cope with these issues. Numéro de notice : A2022-510 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113134 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101047
in Remote sensing of environment > vol 279 (15 September 2022) . - n° 113134[article]Evaluation of the GSRM2.1 and the NUVEL1-A values in Europe using SLR and VLBI based geodetic velocity fields / Mina Rahmani in Survey review, vol 54 n° 385 (July 2022)
![]()
[article]
Titre : Evaluation of the GSRM2.1 and the NUVEL1-A values in Europe using SLR and VLBI based geodetic velocity fields Type de document : Article/Communication Auteurs : Mina Rahmani, Auteur ; Vahab Nafisi, Auteur ; Sigrid Böhm, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 349 - 362 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] champ de vitesse
[Termes IGN] interférométrie à très grande base
[Termes IGN] magnitude
[Termes IGN] station VLBI
[Termes IGN] tectonique des plaques
[Termes IGN] télémètre laser sur satelliteRésumé : (auteur) The NUVEL1-A is one of the old and popular plate tectonic models. While the NUVEL1-A is a geological-based model, recently a model has been proposed (GSRM2.1 model) which is based on the results of space geodetic techniques. In this work, we investigate the consistency of these models with the VLBI and SLR results in Europe. Direction and magnitude of the horizontal motion from NUVEL-1A and GSRM2.1 models are compared with corresponding values from both geodetic techniques. This comparison provides valuable deductions such as: (1) The values of geodetic-based model (GSRM2.1) show better agreement with SLR and VLBI results (2) In each comparison between geodetic results and modelled values, direction divergence is larger than magnitude difference. Numéro de notice : A2022-536 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1943633 Date de publication en ligne : 25/06/2021 En ligne : https://doi.org/10.1080/00396265.2021.1943633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101092
in Survey review > vol 54 n° 385 (July 2022) . - pp 349 - 362[article]Human cognition based framework for detecting roads from remote sensing images / Naveen Chandra in Geocarto international, vol 37 n° 8 ([22/06/2022])
![]()
[article]
Titre : Human cognition based framework for detecting roads from remote sensing images Type de document : Article/Communication Auteurs : Naveen Chandra, Auteur ; Himadri Vaidya, Auteur ; Jayanta Kumar Ghosh, Auteur Année de publication : 2022 Article en page(s) : pp 2365 - 2384 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image numérique
[Termes IGN] classification
[Termes IGN] cognition
[Termes IGN] extraction du réseau routier
[Termes IGN] image à haute résolution
[Termes IGN] interprétation (psychologie)
[Termes IGN] représentation cognitive
[Termes IGN] segmentation d'imageRésumé : (auteur) The complete extraction of roads from remote sensing images (RSIs) is an emergent area of research. It is an interesting topic as it involves diverse procedures for detecting roads. The detection of roads using high-resolution-satellite-images (HRSi) is challenging because of the occurrence of several types of noise such as bridges, vehicles, and crossing lines, etc. The extraction of the correct road network is crucial due to its broad range of applications such as transportation, map updating, navigation, and generating maps. Therefore our paper concentrates on understanding the cognitive processes, reasoning, and knowledge used by the analyst through visual cognition while performing the task of road detection from HRSi. The novel process is performed emulating human cognition within cognitive task analysis which is carried out in five different stages. The suggested cognitive procedure for road extraction is validated with the fifteen HRSi of four different land cover patterns specifically developed-sub-urban (DSUr), developed-urban (DUr), emerging-sub-urban (ESUr), and emerging-urban (EUr). The experimental results and the comparative assessment prove the impact of the presented cognitive method. Numéro de notice : A2022-506 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1810330 Date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1810330 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101027
in Geocarto international > vol 37 n° 8 [22/06/2022] . - pp 2365 - 2384[article]On the consistency of coastal sea-level measurements in the Mediterranean Sea from tide gauges and satellite radar altimetry / Sara Bruni in Journal of geodesy, vol 96 n° 6 (June 2022)
![]()
[article]
Titre : On the consistency of coastal sea-level measurements in the Mediterranean Sea from tide gauges and satellite radar altimetry Type de document : Article/Communication Auteurs : Sara Bruni, Auteur ; Luciana Fenoglio, Auteur ; Fabio Raicich, Auteur ; Susanna Zerbini, Auteur Année de publication : 2022 Article en page(s) : n° 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse comparative
[Termes IGN] cohérence des données
[Termes IGN] déformation verticale de la croute terrestre
[Termes IGN] données altimétriques
[Termes IGN] données marégraphiques
[Termes IGN] Méditerranée, mer
[Termes IGN] niveau de la merRésumé : (auteur) We assess the consistency of sea-level variability derived from tide-gauge (TG) and satellite radar altimeter (ALT) data acquired along the coasts of the Mediterranean Sea. For a coherent comparison between these techniques, we use GNSS observations to characterize the local vertical land movement embedded in TG records, but not affecting ALT data. We first investigate the performance of CMEMS, a gridded altimeter product covering the period 1993–2019. TG and GNSS series are not required to cover the whole altimeter period. The inter-technique comparison reveals good agreement at annual and semi-annual scales, but also the occasional occurrence of nonlinear discrepancies impacting trend estimation. Large-scale patterns of variability are observed in the Ionian region and along the continental shores from the Alboran to the Adriatic Sea. The estimates of linear trends based on TG + GNSS or CMEMS observations are found consistent within 1σ at 27/45 sites, with the best agreement in the Western Mediterranean and Adriatic Seas. We also consider the X-TRACK/ALES altimeter dataset, provided along the tracks of the Jason missions (2002–2018) and optimized for coastal applications. In this case, we identify only 12 sites suitable for the comparison. The results show that inter-technique consistency is impacted by the length of the series used in the comparison. Optimum agreement between X-TRACK/ALES and TG + GNSS trends is reached at the two sites closer to a satellite track. However, we find sites where X-TRACK/ALES-derived sea-level trends present suspicious along-track variations at Numéro de notice : A2022-452 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01626-9 En ligne : http://dx.doi.org/10.1007/s00190-022-01626-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100976
in Journal of geodesy > vol 96 n° 6 (June 2022) . - n° 41[article]Management or climate and which one has the greatest impact on forest soil’s protective value? A case study in Romanian mountains / Cosmin Cosofret in Forests, vol 13 n° 6 (June 2022)
PermalinkExploring digital twin adaptation to the urban environment: comparison with CIM to avoid silo-based approaches / Adeline Deprêtre in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
PermalinkAssessing the positioning performance of GNSS receivers under different geomagnetic storm conditions / Chao Yan in Survey review, vol 54 n° 384 (May 2022)
PermalinkComparison between Gaussian and decorrelation filters of GRACE-based RL05 temporal gravity solutions over Egypt / Basem Elsaka in Survey review, vol 54 n° 384 (May 2022)
PermalinkFusion of optical, radar and waveform LiDAR observations for land cover classification / Huiran Jin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkFertilization modifies forest stand growth but not stand density: consequences for modelling stand dynamics in a changing climate / Hans Pretzsch in Forestry, an international journal of forest research, vol 95 n° 2 (April 2022)
PermalinkAn improved vertical correction method for the inter-comparison and inter-validation of Integrated Water Vapour measurements / Olivier Bock in Atmospheric measurement techniques, vol 15 n° inconnu ([01/04/2022])
PermalinkA knowledge representation model based on the geographic spatiotemporal process / Kun Zheng in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
PermalinkA national fuel type mapping method improvement using sentinel-2 satellite data / Alexandra Stefanidou in Geocarto international, vol 37 n° 4 (April 2022)
PermalinkSuspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 (April 2022)
Permalink