Descripteur


Etendre la recherche sur niveau(x) vers le bas
An innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data / Van-Tho Nguyen in Annals of Forest Science [en ligne], vol 78 n° 2 (June 2021)
![]()
[article]
Titre : An innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data Type de document : Article/Communication Auteurs : Van-Tho Nguyen, Auteur ; Thiéry Constant, Auteur ; Francis Colin, Auteur Année de publication : 2021 Article en page(s) : Article 32 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] détection d'anomalie
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] écorce
[Termes descripteurs IGN] Fagus sylvatica
[Termes descripteurs IGN] qualité du bois
[Termes descripteurs IGN] quercus sessiliflora
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] télémétrie laser terrestre
[Termes descripteurs IGN] troncRésumé : (Auteur) We designed a novel method allowing to automatically detect and measure defects on the surface of trunks including branches, branch scars, and epicormics from terrestrial LiDAR data by using only high-density 3D information. We could automatically detect and measure the defects with a diameter as small as 0.5 cm on either oak (Quercus petraea (Matt.) Liebl.) or beech (Fagus sylvatica L.) trees that display either rough or smooth bark. Numéro de notice : A2021-326 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01022-3 date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.1007/s13595-020-01022-3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97484
in Annals of Forest Science [en ligne] > vol 78 n° 2 (June 2021) . - Article 32[article]Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation / Yansheng Li in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
![]()
[article]
Titre : Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation Type de document : Article/Communication Auteurs : Yansheng Li, Auteur ; Te Shi, Auteur ; Yongjun Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 20 - 33 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] données d'apprentissage
[Termes descripteurs IGN] programmation par contraintes
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (auteur) Due to its wide applications, remote sensing (RS) image semantic segmentation has attracted increasing research interest in recent years. Benefiting from its hierarchical abstract ability, the deep semantic segmentation network (DSSN) has achieved tremendous success on RS image semantic segmentation and has gradually become the mainstream technology. However, the superior performance of DSSN highly depends on two conditions: (I) massive quantities of labeled training data exist; (II) the testing data seriously resemble the training data. In actual RS applications, it is difficult to fully meet these conditions due to the RS sensor variation and the distinct landscape variation in different geographic locations. To make DSSN fit the actual RS scenario, this paper exploits the cross-domain RS image semantic segmentation task, which means that DSSN is trained on one labeled dataset (i.e., the source domain) but is tested on another varied dataset (i.e., the target domain). In this setting, the performance of DSSN is inevitably very limited due to the data shift between the source and target domains. To reduce the disadvantageous influence of data shift, this paper proposes a novel objective function with multiple weakly-supervised constraints to learn DSSN for cross-domain RS image semantic segmentation. Through carefully examining the characteristics of cross-domain RS image semantic segmentation, multiple weakly-supervised constraints include the weakly-supervised transfer invariant constraint (WTIC), weakly-supervised pseudo-label constraint (WPLC) and weakly-supervised rotation consistency constraint (WRCC). Specifically, DualGAN is recommended to conduct unsupervised style transfer between the source and target domains to carry out WTIC. To make full use of the merits of multiple constraints, this paper presents a dynamic optimization strategy that dynamically adjusts the constraint weights of the objective function during the training process. With full consideration of the characteristics of the cross-domain RS image semantic segmentation task, this paper gives two cross-domain RS image semantic segmentation settings: (I) variation in geographic location and (II) variation in both geographic location and imaging mode. Extensive experiments demonstrate that our proposed method remarkably outperforms the state-of-the-art methods under both of these settings. The collected datasets and evaluation benchmarks have been made publicly available online (https://github.com/te-shi/MUCSS). Numéro de notice : A2021-261 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.009 date de publication en ligne : 06/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97302
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 20 - 33[article]Learning from multimodal and multitemporal earth observation data for building damage mapping / Bruno Adriano in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
![]()
[article]
Titre : Learning from multimodal and multitemporal earth observation data for building damage mapping Type de document : Article/Communication Auteurs : Bruno Adriano, Auteur ; Naoto Yokoya, Auteur ; Junshi Xia, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 132 - 143 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] catastrophe naturelle
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] cyclone
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] données multitemporelles
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] observation de la Terre
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] séisme
[Termes descripteurs IGN] surveillance d'ouvrage
[Termes descripteurs IGN] tsunamiRésumé : (auteur) Earth observation (EO) technologies, such as optical imaging and synthetic aperture radar (SAR), provide excellent means to continuously monitor ever-growing urban environments. Notably, in the case of large-scale disasters (e.g., tsunamis and earthquakes), in which a response is highly time-critical, images from both data modalities can complement each other to accurately convey the full damage condition in the disaster aftermath. However, due to several factors, such as weather and satellite coverage, which data modality will be the first available for rapid disaster response efforts is often uncertain. Hence, novel methodologies that can utilize all accessible EO datasets are essential for disaster management. In this study, we developed a global multimodal and multitemporal dataset for building damage mapping. We included building damage characteristics from three disaster types, namely, earthquakes, tsunamis, and typhoons, and considered three building damage categories. The global dataset contains high-resolution (HR) optical imagery and high-to-moderate-resolution SAR data acquired before and after each disaster. Using this comprehensive dataset, we analyzed five data modality scenarios for damage mapping: single-mode (optical and SAR datasets), cross-modal (pre-disaster optical and post-disaster SAR datasets), and mode fusion scenarios. We defined a damage mapping framework for semantic segmentation of damaged buildings based on a deep convolutional neural network (CNN) algorithm. We also compared our approach to another state-of-the-art model for damage mapping. The results indicated that our dataset, together with a deep learning network, enabled acceptable predictions for all the data modality scenarios. We also found that the results from cross-modal mapping were comparable to the results obtained from a fusion sensor and optical mode analysis. Numéro de notice : A2021-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.016 date de publication en ligne : 17/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97343
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 132 - 143[article]Structure-aware completion of photogrammetric meshes in urban road environment / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
![]()
[article]
Titre : Structure-aware completion of photogrammetric meshes in urban road environment Type de document : Article/Communication Auteurs : Qing Zhu, Auteur ; Qisen Shang, Auteur ; Han Hu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] détection de partie cachée
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] image aérienne oblique
[Termes descripteurs IGN] maillage
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] reconstruction de route
[Termes descripteurs IGN] réseau routier
[Termes descripteurs IGN] textureRésumé : (auteur) Photogrammetric mesh models obtained from aerial oblique images have been widely used for urban reconstruction. However, photogrammetric meshes suffer from severe texture problems, particularly in typical road areas, owing to occlusion. This paper proposes a structure-aware completion approach to improve mesh quality by seamlessly removing undesired vehicles. Specifically, a discontinuous texture atlas is first integrated into a continuous screen space by rendering trough a graphics pipeline. The rendering also records the necessary mapping for deintegration to the original texture atlas after editing. Vehicle regions are masked by a standard object detection approach, namely, Faster RCNN. Subsequently, the masked regions are completed, guided by the linear structures and regularities in the road region; this is implemented based on PatchMatch. Finally, the completed rendered image is deintegrated to the original texture atlas, and the triangles for the vehicles are also flattened so that improved meshes can be obtained. Experimental evaluation and analysis are conducted on three datasets, which were captured with different sensors and ground sample distances. The results demonstrate that the proposed method can produce quite realistic meshes after removing the vehicles. The structure-aware completion approach for road regions outperforms popular image completion methods, and an ablation study further confirms the effectiveness of the linear guidance. It should be noted that the proposed method can also handle tiled mesh models for large-scale scenes. Code and datasets are available at the project website. Numéro de notice : A2021-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.010 date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97312
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 56 - 70[article]Estimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey / Alkan Günlü in Geocarto international, vol 36 n° 8 ([15/04/2021])
![]()
[article]
Titre : Estimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey Type de document : Article/Communication Auteurs : Alkan Günlü, Auteur ; İlker Ercanlı, Auteur ; Muammer Şenyurt, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 918 - 935 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] classification par Perceptron multicouche
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] fonction de base radiale
[Termes descripteurs IGN] gestion forestière
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] peuplement forestier
[Termes descripteurs IGN] Pinus nigra
[Termes descripteurs IGN] régression multiple
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] TurquieRésumé : (auteur) The aim of this research is to assess some stand parameters such as stand volume (SV), basal area (BA), number of trees (NT) and aboveground biomass (AGB) of pure Crimean pine forest stands in Turkey by using ground measurements and remote sensing techniques. For this purpose, 86 sample plots were collected from pure Crimean pine stands of Yenice Forest Management Planning Unit in Ilgaz Forest Management Enterprise, Turkey. The stand parameters of each sample area were estimated using the data obtained from the sample plots. Subsequently, we calculated the values of contrast (CON), correlation (COR), dissimilarity (DIS), entropy (ENT), homogeneity (HOM), mean (M), second moment (SM) and variance (VAR) from WorldView-2 imagery using a grey-level co-occurrence matrix method. Eight textural features and twelve different window sizes ranging from 3 × 3 to 25 × 25 were generated from blue, green, red and near-infrared bands of the WorldView-2 satellite image. For predicting the relationships between WorldView-2 textural features and stand parameters of each sample plot, regression models were developed by using multiple linear regression (MLR) analysis. Additionally, artificial neural networks (ANNs) based on the multilayer perceptron (MLP) and the radial basis function (RBF) architectures were trained by comparing various numbers of neurons and activation functions in their network types. The results showed that the MLR models had low the coefficient of determination (R2) values (0.32 for SV, 0.35 for BA, 0.33 for NT and 0.34 for AGB), and the most of the ANNs models (MLP and RBF) were better than the regression models for estimating stand parameters. The ANNs model containing MLP and RBF for SV (R2 = 0.40; R2 = 0.56), for BA (R2 = 0.34; R2 = 0.51), for NT (R2 = 0.34; R2 = 0.37) and for AGB (R2 = 0.34, R2 = 0.57) were found the best results, respectively. Our results revealed that the ANNs models developed with WorldView-2 satellite image were beneficial to estimate stand parameters better than the MLR model in pure Crimean pine stands. Numéro de notice : A2021-308 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1629644 date de publication en ligne : 25/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1629644 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97443
in Geocarto international > vol 36 n° 8 [15/04/2021] . - pp 918 - 935[article]Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours / Amir Hossein Safaie in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
PermalinkA CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
PermalinkExtraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkA geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
PermalinkPermalinkPermalinkRotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss / Ruoqiao Jiang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkSpectral–spatial-aware unsupervised change detection with stochastic distances and support vector machines / Rogério Galante Negri in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkThe delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods / Akhtar Jamil in Geocarto international, vol 36 n° 7 ([01/04/2021])
PermalinkTree extraction and estimation of walnut structure parameters using airborne LiDAR data / Javier Estornell in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
PermalinkUnsupervised pansharpening based on self-attention mechanism / Ying Qu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkUsing a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
PermalinkVisual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
PermalinkBasin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery / Zifeng Wang in Remote sensing of environment, Vol 255 (March 2021)
Permalink3D change detection using adaptive thresholds based on local point cloud density / Dan Liu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkAssessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm / Siddhartho Shekhar Paul in Geocarto international, vol 36 n° 4 ([01/03/2021])
PermalinkAutomated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)
PermalinkCharacterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
PermalinkExtraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image / Wenfu Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
PermalinkFeature detection and description for image matching: from hand-crafted design to deep learning / Lin Chen in Geo-spatial Information Science, vol 24 n° 1 (March 2021)
PermalinkImproving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR / Kabir Peerbhay in Geocarto international, vol 36 n° 4 ([01/03/2021])
PermalinkLearning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkA novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (March 2021)
PermalinkPassive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkPBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery / Xian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
PermalinkPerformance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (March 2021)
PermalinkRobust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
PermalinkSaline-soil deformation extraction based on an improved time-series InSAR approach / Wei Xiang in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkToward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)
PermalinkAutomatic filtering and 2D modeling of airborne laser scanning building point cloud / Fayez Tarsha-Kurdi in Transactions in GIS, Vol 25 n° 1 (February 2021)
PermalinkCorrentropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkCurved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives / Jingwei Song in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkDeep traffic light detection by overlaying synthetic context on arbitrary natural images / Jean Pablo Vieira de Mello in Computers and graphics, vol 94 n° 1 (February 2021)
PermalinkMonitoring the coastal changes of the Po river delta (Northern Italy) since 1911 using archival cartography, multi-temporal aerial photogrammetry and LiDAR data: implications for coastline changes in 2100 A.D. / Massimo Fabris in Remote sensing, Vol 13 n° 3 (February 2021)
PermalinkSAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkSemi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
PermalinkBuilding extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
PermalinkCombining deep learning and mathematical morphology for historical map segmentation / Yizi Chen (2021)
PermalinkConnecting images through time and sources: Introducing low-data, heterogeneous instance retrieval / Dimitri Gominski (2021)
PermalinkExtraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkFuNet: A novel road extraction network with fusion of location data and remote sensing imagery / Kai Zhou in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
PermalinkImage matching from handcrafted to deep features: A survey / Jiayi Ma in International journal of computer vision, vol 29 n° 1 (January 2021)
PermalinkImpact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkImproving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / R. Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkPermalinkLANet: Local attention embedding to improve the semantic segmentation of remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkMask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors / Emilio Guirado in Sensors, vol 21 n° 1 (January 2021)
PermalinkRelation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkSteps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery / Debasish Chakraborty in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkUnderwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network / Mengdi Li in Sensors, vol 21 n° 1 (January 2021)
PermalinkUnifying remote sensing image retrieval and classification with robust fine-tuning / Dimitri Gominski (2021)
PermalinkUnmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkAnalysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) / Mirza Razi Imam Baig in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkAutomatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
PermalinkChoosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkDeep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination / Frederik Hass in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)
PermalinkExploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal / Santa Pandit in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkA framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkIntegrated Kalman filter of accurate ranging and tracking with wideband radar / Shaopeng Wei in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkMapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkMS-RRFSegNetMultiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds / Haifeng Luo in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkParsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkSemantic trajectory segmentation based on change-point detection and ontology / Yuan Gao in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkUnderstanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection / Chandi Witharana in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkUnsupervised deep joint segmentation of multitemporal high-resolution images / Sudipan Saha in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkDétection du changement de l'étalement urbain au bas-Sahara algérien : apport de la télédétection spatiale et des SIG, cas de la ville de Biskra (Algérie) / Assoule Dechaicha in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkActive and incremental learning for semantic ALS point cloud segmentation / Yaping Lin in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkBayesian transfer learning for object detection in optical remote sensing images / Changsheng Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkBuilding change detection using a shape context similarity model for LiDAR data / Xuzhe Lyu in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkA deep learning framework for matching of SAR and optical imagery / Lloyd Haydn Hughes in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkA fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkHigh-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkMapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
PermalinkRiver ice segmentation with deep learning / Abhineet Singh in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkStreets of London: Using Flickr and OpenStreetMap to build an interactive image of the city / Azam Raha Bahrehdar in Computers, Environment and Urban Systems, vol 84 (November 2020)
PermalinkTopographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkUrban tree species identification and carbon stock mapping for urban green planning and management / MD Abdul Choudhury in Forests, vol 11 n°11 (November 2020)
PermalinkDrought stress detection in juvenile oilseed rape using hyperspectral imaging with a focus on spectra variability / Wiktor R. Żelazny in Remote sensing, vol 12 n° 20 (October 2020)
PermalinkObject-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkTextural classification of remotely sensed images using multiresolution techniques / Rizwan Ahmed Ansari in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkApplication of convolutional and recurrent neural networks for buried threat detection using ground penetrating radar data / Mahdi Moalla in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkExploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution / Vitor Martins in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkA graph convolutional network model for evaluating potential congestion spots based on local urban built environments / Kun Qin in Transactions in GIS, Vol 24 n° 5 (October 2020)
PermalinkMapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
PermalinkMultiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkA novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification / Jing Lv in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
PermalinkTree species classification using structural features derived from terrestrial laser scanning / Louise Terryn in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkUncertainty of forested wetland maps derived from aerial photography / Stephen P. Prisley in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
PermalinkWide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1 / Dirk Hoekman in Remote sensing, vol 12 n° 19 (October 2020)
PermalinkApplication of UAV photogrammetry with LiDAR data to facilitate the estimation of tree locations and DBH values for high-value timber species in Northern Japanese mixed-wood forests / Kyaw Thu Moe in Remote sensing, vol 12 n° 17 (September 2020)
PermalinkApplying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
PermalinkArctic tsunamis threaten coastal landscapes and communities – survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland / Mateusz C. Strzelecki in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
PermalinkComparison of tree-based classification algorithms in mapping burned forest areas / Dilek Kucuk Matci in Geodetski vestnik, vol 64 n° 3 (September - November 2020)
PermalinkCrater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
Permalink