Descripteur


Etendre la recherche sur niveau(x) vers le bas
Unsupervised pansharpening based on self-attention mechanism / Ying Qu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
![]()
[article]
Titre : Unsupervised pansharpening based on self-attention mechanism Type de document : Article/Communication Auteurs : Ying Qu, Auteur ; Razieh Kaviani Baghbaderani, Auteur ; Hairong Qi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3192 - 3208 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] pouvoir de résolution géométrique
[Termes descripteurs IGN] précision infrapixellaire
[Termes descripteurs IGN] reconstruction d'image
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Pansharpening is to fuse a multispectral image (MSI) of low-spatial-resolution (LR) but rich spectral characteristics with a panchromatic image (PAN) of high spatial resolution (HR) but poor spectral characteristics. Traditional methods usually inject the extracted high-frequency details from PAN into the upsampled MSI. Recent deep learning endeavors are mostly supervised assuming that the HR MSI is available, which is unrealistic especially for satellite images. Nonetheless, these methods could not fully exploit the rich spectral characteristics in the MSI. Due to the wide existence of mixed pixels in satellite images where each pixel tends to cover more than one constituent material, pansharpening at the subpixel level becomes essential. In this article, we propose an unsupervised pansharpening (UP) method in a deep-learning framework to address the abovementioned challenges based on the self-attention mechanism (SAM), referred to as UP-SAM. The contribution of this article is threefold. First, the SAM is proposed where the spatial varying detail extraction and injection functions are estimated according to the attention representations indicating spectral characteristics of the MSI with subpixel accuracy. Second, such attention representations are derived from mixed pixels with the proposed stacked attention network powered with a stick-breaking structure to meet the physical constraints of mixed pixel formulations. Third, the detail extraction and injection functions are spatial varying based on the attention representations, which largely improves the reconstruction accuracy. Extensive experimental results demonstrate that the proposed approach is able to reconstruct sharper MSI of different types, with more details and less spectral distortion compared with the state-of-the-art. Numéro de notice : A2021-285 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3009207 date de publication en ligne : 23/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3009207 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97394
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3192 - 3208[article]Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
![]()
[article]
Titre : Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide Type de document : Article/Communication Auteurs : Chaoyang Niu, Auteur ; Haobo Zhang, Auteur ; Wei Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 67 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] décomposition d'image
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] mouvement de terrain
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] ShenzhenRésumé : (auteur) Synthetic aperture radar (SAR) polarimetry has demonstrated high efficiency in the detection of landslides in vegetated mountainous areas. In such places, post-landslide soil layers appear to correspond to the typical surface scattering mechanism, which is significantly different from the volume scattering behaviour of the surrounding vegetation. However, a landslide in the complex surroundings of various landforms, involving naked hillslopes, construction fields, bare farmlands, and other such aspects, may not be accurately identified owing to the occurrence of surface scattering behaviours. In order to detect landslides using SAR polarimetry without the limitation of vegetated mountainous areas, we propose a novel method of combining change detection (CD) and an analytic hierarchy process (AHP) based on the Yamaguchi decomposition (YD) to identify landslides while ensuring fewer false alarms. In particular, CD is applied to a pair of pre- and post-event datasets to determine the regions modified by landslides or human activities, and the AHP is performed over the post-event dataset to identify the suspect landslide region characterised by the surface scattering mechanism. Finally, the two results are fused by a logical operation to identify the actual landslide by removing the non-modified surface scattering regions. A case study of the Shenzhen landslide in complex surroundings was considered to verify the performance of the proposed method (CD-AHP). The results indicate that the method could clearly define the main body of the Shenzhen landslide from the city suburbs with a small number of false alarms. Therefore, this method provides a considerable perspective for landslide detection in complex surroundings using SAR polarimetry. Numéro de notice : A2021-207 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.022 date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97184
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 56 - 67[article]Visual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
![]()
[article]
Titre : Visual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors Type de document : Article/Communication Auteurs : Longyu Zhang, Auteur ; Hao Xia, Auteur ; Qingjun Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 195 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] estimation de pose
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] scène intérieure
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] SURF (algorithme)
[Termes descripteurs IGN] téléphone intelligent
[Termes descripteurs IGN] vision par ordinateurRésumé : (auteur) Positioning information has become one of the most important information for processing and displaying on smart mobile devices. In this paper, we propose a visual positioning method using RGB-D image on smart mobile devices. Firstly, the pose of each image in the training set is calculated through feature extraction and description, image registration, and pose map optimization. Then, in the image retrieval stage, the training set and the query set are clustered to generate the vector of local aggregated descriptors (VLAD) description vector. In order to overcome the problem that the description vector loses the image color information and improve the retrieval accuracy under different lighting conditions, the opponent color information and depth information are added to the description vector for retrieval. Finally, using the point cloud corresponding to the retrieval result image and its pose, the pose of the retrieved image is calculated by perspective-n-point (PnP) method. The results of indoor scene positioning under different illumination conditions show that the proposed method not only improves the positioning accuracy compared with the original VLAD and ORB-SLAM2, but also has high computational efficiency. Numéro de notice : A2021-305 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10040195 date de publication en ligne : 24/03/2021 En ligne : https://doi.org/10.3390/ijgi10040195 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97425
in ISPRS International journal of geo-information > vol 10 n° 4 (April 2021) . - n° 195[article]Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery / Zifeng Wang in Remote sensing of environment, Vol 255 (March 2021)
![]()
[article]
Titre : Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery Type de document : Article/Communication Auteurs : Zifeng Wang, Auteur ; Junguo Liu, Auteur ; Jinbao Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112281 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Asie du sud-est
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] données hydrographiques
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] réseau de drainage
[Termes descripteurs IGN] réseau fluvialRésumé : (auteur) Extraction of drainage networks is an important element of river flow routing in hydrology and large-scale estimates of river behaviors in Earth sciences. Emerging studies with a focus on greenhouse gases reveal that small rivers can contribute to more than half of the global carbon emissions from inland waters (including lakes and wetlands). However, large-scale extraction of drainage networks is constrained by the coarse resolution of observational data and models, which hinders assessments of terrestrial hydrological and biogeochemical cycles. Recognizing that Sentinel-2 satellite can detect surface water up to a 10-m resolution over large scales, we propose a new method named Remote Sensing Stream Burning (RSSB) to integrate high-resolution observational flow location with coarse topography to improve the extraction of drainage network. In RSSB, satellite-derived input is integrated in a spatially continuous manner, producing a quasi-bathymetry map where relative relief is enforced, enabling a fine-grained, accurate, and multitemporal extraction of drainage network. RSSB was applied to the Lancang-Mekong River basin to derive a 10-m resolution drainage network, with a significant reduction in location errors as validated by the river centerline measurements. The high-resolution extraction resulted in a realistic representation of meanders and detailed network connections. Further, RSSB enabled a multitemporal extraction of river networks during wet/dry seasons and before/after the formation of new channels. The proposed method is fully automated, meaning that the network extraction preserves basin-wide connectivity without requiring any postprocessing, hence facilitating the construction of drainage networks data with openly accessible imagery. The RSSB method provides a basis for the accurate representation of drainage networks that maintains channel connectivity, allows a more realistic inclusion of small rivers and streams, and enables a greater understanding of complex but active exchange between inland water and other related Earth system components. Numéro de notice : A2021-191 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2020.112281 date de publication en ligne : 21/01/2021 En ligne : https://doi.org/10.1016/j.rse.2020.112281 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97112
in Remote sensing of environment > Vol 255 (March 2021) . - n° 112281[article]3D change detection using adaptive thresholds based on local point cloud density / Dan Liu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
![]()
[article]
Titre : 3D change detection using adaptive thresholds based on local point cloud density Type de document : Article/Communication Auteurs : Dan Liu, Auteur ; Dajun Li, Auteur ; Meizhen Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 127 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] MNS lidar
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] seuillage de pointsRésumé : (auteur) In recent years, because of highly developed LiDAR (Light Detection and Ranging) technologies, there has been increasing demand for 3D change detection in urban monitoring, urban model updating, and disaster assessment. In order to improve the effectiveness of 3D change detection based on point clouds, an approach for 3D change detection using point-based comparison is presented in this paper. To avoid density variation in point clouds, adaptive thresholds are calculated through the k-neighboring average distance and the local point cloud density. A series of experiments for quantitative evaluation is performed. In the experiments, the influencing factors including threshold, registration error, and neighboring number of 3D change detection are discussed and analyzed. The results of the experiments demonstrate that the approach using adaptive thresholds based on local point cloud density are effective and suitable. Numéro de notice : A2021-231 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10030127 date de publication en ligne : 02/03/2021 En ligne : https://doi.org/10.3390/ijgi10030127 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97222
in ISPRS International journal of geo-information > vol 10 n° 3 (March 2021) . - n° 127[article]Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm / Siddhartho Shekhar Paul in Geocarto international, vol 36 n° 4 ([01/03/2021])
PermalinkAutomated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)
PermalinkCharacterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
PermalinkExtraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image / Wenfu Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
PermalinkFeature detection and description for image matching: from hand-crafted design to deep learning / Lin Chen in Geo-spatial Information Science, vol 24 n° 1 (March 2021)
PermalinkImproving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR / Kabir Peerbhay in Geocarto international, vol 36 n° 4 ([01/03/2021])
PermalinkLearning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkA novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (March 2021)
PermalinkPassive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkPBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery / Xian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
Permalink