Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > analyse des mélanges spectraux
analyse des mélanges spectrauxSynonyme(s)SMA |



Etendre la recherche sur niveau(x) vers le bas
Unmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Unmixing-based Sentinel-2 downscaling for urban land cover mapping Type de document : Article/Communication Auteurs : Fei Xu, Auteur ; Ben Somers, Auteur Année de publication : 2021 Article en page(s) : pp 133 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] Berlin
[Termes descripteurs IGN] Bruxelles
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] Cologne
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] occupation du solRésumé : (auteur) With the launch of Sentinel-2 new opportunities for large scale urban mapping arise. However, the spectral information embedded in the Sentinel-2 20 m spatial resolution bands cannot yet be fully explored in heterogeneous urban landscapes. The 20 m image pixels are often composed of different land covers, resulting in a difficult to interpret mixed pixel spectrum. Here, we propose an unmixing-based image fusion algorithm (UnFuSen2) that self-adapts to the spectral variability of varying land covers and improves the image fusion accuracy by constraining the unmixing equations on the basis of spectral mixing models and the correlation between spectral bands of coarse and fine spatial resolution, respectively. When compared to alternative state-of-the-art downscaling methods UnFuSen2 consistently showed the highest accuracy when applied across test sites in three different European cities (RMSEUnFuSen2 = 203 vs RMSEalternatives = [252, 337]). In a next step, we applied Multiple Endmember Spectral Mixture Analysis (MESMA) on the downscaled Sentinel-2 image cube (i.e. ten 10 m bands) to generate subpixel urban land cover fractions. We compared our MESMA results against the traditional MESMA output as applied on the original Sentinel-2 image cube (i.e. four 10 m bands and six 20 m bands) and tested its robustness against reference data obtained over all three study sites. Results revealed an average decrease in RMSE of respectively 18% and 8% for impervious surface and vegetation fractions when our approach was compared to the traditional MESMA outcomes. Numéro de notice : A2021-015 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.009 date de publication en ligne : 26/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96419
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 133 - 154[article]Mapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
![]()
[article]
Titre : Mapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery Type de document : Article/Communication Auteurs : Astrid Helena Huechacona-Ruiz, Auteur ; Juan Manuel Dupuy, Auteur ; Naomi B. Schwartz, Auteur Année de publication : 2020 Article en page(s) : n° 1234 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] arbre caducifolié
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] YucatanRésumé : (auteur) In tropical dry forests, deciduousness (i.e., leaf shedding during the dry season) is an important adaptation of plants to cope with water limitation, which helps trees adjust to seasonal drought. Deciduousness is also a critical factor determining the timing and duration of carbon fixation rates, and affecting energy, water, and carbon balance. Therefore, quantifying deciduousness is vital to understand important ecosystem processes in tropical dry forests. The aim of this study was to map tree species deciduousness in three types of tropical dry forests along a precipitation gradient in the Yucatan Peninsula using Sentinel-2 imagery. We propose an approach that combines reflectance of visible and near-infrared bands, normalized difference vegetation index (NDVI), spectral unmixing deciduous fraction, and several texture metrics to estimate the spatial distribution of tree species deciduousness. Deciduousness in the study area was highly variable and decreased along the precipitation gradient, while the spatial variation in deciduousness among sites followed an inverse pattern, ranging from 91.5 to 43.3% and from 3.4 to 9.4% respectively from the northwest to the southeast of the peninsula. Most of the variation in deciduousness was predicted jointly by spectral variables and texture metrics, but texture metrics had a higher exclusive contribution. Moreover, including texture metrics as independent variables increased the variance of deciduousness explained by the models from R2 = 0.56 to R2 = 0.60 and the root mean square error (RMSE) was reduced from 16.9% to 16.2%. We present the first spatially continuous deciduousness map of the three most important vegetation types in the Yucatan Peninsula using high-resolution imagery. Numéro de notice : A2020-756 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111234 date de publication en ligne : 23/11/2020 En ligne : https://doi.org/10.3390/f11111234 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96468
in Forests > vol 11 n°11 (November 2020) . - n° 1234[article]Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection / Zeyang Dou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection Type de document : Article/Communication Auteurs : Zeyang Dou, Auteur ; Kun Gao, Auteur ; Xiaodian Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6550 - 6564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] distribution de Gauss
[Termes descripteurs IGN] erreur
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] reconstruction d'image
[Termes descripteurs IGN] valeur aberranteRésumé : (auteur) Hyperspectral unmixing, which estimates end-members and their corresponding abundance fractions simultaneously, is an important task for hyperspectral applications. In this article, we propose a new autoencoder-based hyperspectral unmixing model with three novel components. First, we propose a new sparse prior to abundance maps. The proposed prior, called orthogonal sparse prior (OSP), is based on the observations that different abundance maps are close to orthogonal because, generally, no more than two end-members are mixed within one pixel. As opposed to the conventional norm-based sparse prior that assumes the abundance maps are independent, the proposed OSP explores the orthogonality between the abundance maps. Second, we propose the hyper-Laplacian loss to model the reconstruction error. The key observation is that the reconstruction error distribution usually has a heavy-tailed shape, which is better modeled by the hyper-Laplacian distribution rather than the commonly used Gaussian distribution. Third, to ease the side effect of outliers for end-member initializations, we develop a data-driven approach to detect outliers from the raw hyperspectral images. Extensive experiments on both synthetic and real-world data sets show that the proposed method significantly and consistently outperforms the compared state-of-the-art methods, with up to more than 50% improvements. Numéro de notice : A2020-532 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977819 date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95715
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6550 - 6564[article]Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
![]()
[article]
Titre : Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing Type de document : Article/Communication Auteurs : Jonathan B. Thayn, Auteur Année de publication : 2020 Article en page(s) : pp 493 - 508 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse linéaire des mélanges spectraux
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] Mexique
[Termes descripteurs IGN] réflectance spectraleRésumé : (auteur) Small stands of mangrove trees are difficult to detect and monitor using satellite remote sensing because the width of the narrow strips of vegetation are typically much smaller than the spatial resolution of the imagery. Every mangrove pixel also contains water and bare soil reflectance. Linear spectral unmixing, which estimates the fractional presence of specific land cover types per pixel, was performed on Landsat 8 imagery to detect mangroves on the eastern shoreline of the Bay of La Paz on the Baja California Peninsula of Mexico. Low-altitude aerial imagery collected from a DJI Mavic Pro drone was used as ground-reference data in the accuracy assessment. Continuous fractional presence of mangroves was detected with 80% accuracy and 85% of mangrove area was found. Future work will use linear spectral unmixing to systematically monitor mangrove extent and health in the region relative to expected growth in tourism development. Numéro de notice : A2020-483 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2020.1751753 date de publication en ligne : 30/04/2020 En ligne : https://doi.org/10.1080/01490419.2020.1751753 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95636
in Marine geodesy > Vol 43 n° 5 (September 2020) . - pp 493 - 508[article]A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea / Ying Li in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
![]()
[article]
Titre : A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea Type de document : Article/Communication Auteurs : Ying Li, Auteur ; Huimin Lu, Auteur ; Zhenduo Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4684 - 4701 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] équation polynomiale
[Termes descripteurs IGN] hydrocarbure
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] marée noire
[Termes descripteurs IGN] modèle non linéaire
[Termes descripteurs IGN] pollution des mers
[Termes descripteurs IGN] trigonométrieRésumé : (auteur) Hyperspectral remote sensing is currently being used to detect and monitor marine oil spills that cause damage to the environment. However, nonlinear interactions of oil and water make it difficult to extract their fractional abundances from the spectral response. Improving the modelling of nonlinear hyperspectral mixtures, which is required for a thorough and reliable characterization of the materials in an image, remains a challenging yet fundamental task. This study proposes a new model that combines polynomial and trigonometric systems to understand the nonlinear effects of oil and water spectral response. Although the model is nonlinear, unmixing is performed by solving a linear problem, thus allowing fast computation. Compared to classic polynomial models, the details of nonlinear interactions are better expressed and quantified, and the reconstruction accuracy and endmember abundance estimation are improved for both synthetic and real datasets. Both the polynomial and trigonometric parts of the model play important roles in characterizing nonlinearities, with statistically linear dependence areas covering more than 90% and 30%, respectively, in oil spill images sampled after the Deepwater Horizon explosion. Analysis of the experimental results suggests that the proposed model provides an efficient and accurate unmixing method that can be used to help design oil spill response plans. Numéro de notice : A2020-452 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723179 date de publication en ligne : 27/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723179 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95540
in International Journal of Remote Sensing IJRS > vol 41 n°12 (20 - 30 March 2020) . - pp 4684 - 4701[article]Assessing environmental impacts of urban growth using remote sensing / John C. Trinder in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
Permalink10th Colour and Visual Computing Symposium 2020 (CVCS 2020), Gjøvik, Norway, and Virtual, September 16-17, 2020 / Jean-Baptiste Thomas (2020)
PermalinkPotential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkPartial linear NMF-based unmixing methods for detection and area estimation of photovoltaic panels in urban hyperspectral remote sensing data / Moussa Sofiane Karoui in Remote sensing, vol 11 n° 18 (September 2019)
PermalinkBurn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data / Alfonso Fernández-Manso in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
PermalinkHyperspectral analysis of soil polluted with four types of hydrocarbons / Laura A. Reséndez-Hernández in Geocarto international, vol 34 n° 9 ([15/06/2019])
Permalink3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction / Maximilian Brell in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
PermalinkSpectral unmixing with perturbed endmembers / Reza Arablouei in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
PermalinkUrban impervious surface estimation from remote sensing and social data / Yan Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 12 (December 2018)
PermalinkUnmixing polarimetric radar images based on land cover type identified by higher resolution optical data before target decomposition: application to forest and bare soil / Sébastien Giordano in IEEE Transactions on geoscience and remote sensing, vol 56 n° 10 (October 2018)
Permalink