Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > analyse des mélanges spectraux
analyse des mélanges spectrauxSynonyme(s)SMA démélange spectral |
Documents disponibles dans cette catégorie (148)



Etendre la recherche sur niveau(x) vers le bas
Deep generative model for spatial–spectral unmixing with multiple endmember priors / Shuaikai Shi in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
![]()
[article]
Titre : Deep generative model for spatial–spectral unmixing with multiple endmember priors Type de document : Article/Communication Auteurs : Shuaikai Shi, Auteur ; Lijun Zhang, Auteur ; Yoann Altmann, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5527214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) Spectral unmixing is an effective tool to mine information at the subpixel level from complex hyperspectral images. To consider the spatially correlated materials distributions in the scene, many algorithms unmix the data in a spatial–spectral fashion; however, existing models are usually unable to model spectral variability simultaneously. In this article, we present a variational autoencoder-based deep generative model for spatial–spectral unmixing (DGMSSU) with endmember variability, by linking the generated endmembers to the probability distributions of endmember bundles extracted from the hyperspectral imagery via discriminators. Besides the convolutional autoencoder-like architecture that can only model the spatial information within the regular patch inputs, DGMSSU is able to alternatively choose graph convolutional networks or self-attention mechanism modules to handle the irregular but more flexible data—superpixel. Experimental results on a simulated dataset, as well as two well-known real hyperspectral images, show the superiority of our proposed approach in comparison with other state-of-the-art spatial–spectral unmixing methods. Compared to the conventional unmixing methods that consider the endmember variability, our proposed model generates more accurate endmembers on each subimage by the adversarial training process. The codes of this work will be available at https://github.com/shuaikaishi/DGMSSU for the sake of reproducibility. Numéro de notice : A2022-380 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3168712 Date de publication en ligne : 18/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3168712 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100645
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 5527214[article]Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 / Nima Pahlevan in Remote sensing of environment, vol 270 (March 2022)
![]()
[article]
Titre : Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 Type de document : Article/Communication Auteurs : Nima Pahlevan, Auteur ; Brandon Smith, Auteur ; Krista Alikas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112860 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] appariement d'images
[Termes IGN] apprentissage automatique
[Termes IGN] chlorophylle
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] correction atmosphérique
[Termes IGN] données multisources
[Termes IGN] eaux côtières
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-OLCI
[Termes IGN] matière organique
[Termes IGN] Oregon (Etats-Unis)
[Termes IGN] qualité des eauxRésumé : (auteur) Constructing multi-source satellite-derived water quality (WQ) products in inland and nearshore coastal waters from the past, present, and future missions is a long-standing challenge. Despite inherent differences in sensors’ spectral capability, spatial sampling, and radiometric performance, research efforts focused on formulating, implementing, and validating universal WQ algorithms continue to evolve. This research extends a recently developed machine-learning (ML) model, i.e., Mixture Density Networks (MDNs) (Pahlevan et al., 2020; Smith et al., 2021), to the inverse problem of simultaneously retrieving WQ indicators, including chlorophyll-a (Chla), Total Suspended Solids (TSS), and the absorption by Colored Dissolved Organic Matter at 440 nm (acdom(440)), across a wide array of aquatic ecosystems. We use a database of in situ measurements to train and optimize MDN models developed for the relevant spectral measurements (400–800 nm) of the Operational Land Imager (OLI), MultiSpectral Instrument (MSI), and Ocean and Land Color Instrument (OLCI) aboard the Landsat-8, Sentinel-2, and Sentinel-3 missions, respectively. Our two performance assessment approaches, namely hold-out and leave-one-out, suggest significant, albeit varying degrees of improvements with respect to second-best algorithms, depending on the sensor and WQ indicator (e.g., 68%, 75%, 117% improvements based on the hold-out method for Chla, TSS, and acdom(440), respectively from MSI-like spectra). Using these two assessment methods, we provide theoretical upper and lower bounds on model performance when evaluating similar and/or out-of-sample datasets. To evaluate multi-mission product consistency across broad spatial scales, map products are demonstrated for three near-concurrent OLI, MSI, and OLCI acquisitions. Overall, estimated TSS and acdom(440) from these three missions are consistent within the uncertainty of the model, but Chla maps from MSI and OLCI achieve greater accuracy than those from OLI. By applying two different atmospheric correction processors to OLI and MSI images, we also conduct matchup analyses to quantify the sensitivity of the MDN model and best-practice algorithms to uncertainties in reflectance products. Our model is less or equally sensitive to these uncertainties compared to other algorithms. Recognizing their uncertainties, MDN models can be applied as a global algorithm to enable harmonized retrievals of Chla, TSS, and acdom(440) in various aquatic ecosystems from multi-source satellite imagery. Local and/or regional ML models tuned with an apt data distribution (e.g., a subset of our dataset) should nevertheless be expected to outperform our global model. Numéro de notice : A2022-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112860 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.1016/j.rse.2021.112860 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99705
in Remote sensing of environment > vol 270 (March 2022) . - n° 112860[article]Improving LSMA for impervious surface estimation in an urban area / Jin Wang in European journal of remote sensing, vol 55 n° 1 (January 2022)
![]()
[article]
Titre : Improving LSMA for impervious surface estimation in an urban area Type de document : Article/Communication Auteurs : Jin Wang, Auteur ; Yaolong Zhao, Auteur ; Yingchun Fu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 37 - 51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification et arbre de régression
[Termes IGN] image Landsat-OLI
[Termes IGN] régression
[Termes IGN] signature spectrale
[Termes IGN] surface imperméable
[Termes IGN] Yunnan (Chine)
[Termes IGN] zone urbaineRésumé : (auteur) Linear spectral mixture analysis (LSMA) and regression analysis are the two most conventionally used methods to estimate impervious surfaces at the subpixel scale in an urban area. However, LSMA lacks the sensitivity to pixel brightness, which leads to inter variability of endmembers and affects the ability to distinguish features with a similar spectral signature. This research aims to develop LSMA aided by a regression analysis model to estimate impervious surfaces with higher accuracy. A spectral angle mapping (SAM) based regression analysis model is introduced to reduce errors. Based on high-resolution images and field survey data, the SAM-based regression analysis can estimate non-impervious surface and high-impervious surface densities with high accuracy, while less accurate in impervious surfaces with low/medium density. In contrast, LSMA is able to estimate low/medium-density impervious surfaces with higher accuracy. We propose an improved approach by integrating the two methods, regression analysis aided LSMA, for impervious surface estimation. The proposed method increases the overall accuracy of the impervious surface estimation to 85.24%, which is significantly greater than that of the conventional methods. Numéro de notice : A2022-098 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/22797254.2021.2018666 Date de publication en ligne : 05/01/2022 En ligne : https://doi.org/10.1080/22797254.2021.2018666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99548
in European journal of remote sensing > vol 55 n° 1 (January 2022) . - pp 37 - 51[article]A novel unmixing-based hypersharpening method via convolutional neural network / Xiaochen Lu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
![]()
[article]
Titre : A novel unmixing-based hypersharpening method via convolutional neural network Type de document : Article/Communication Auteurs : Xiaochen Lu, Auteur ; Tong Li, Auteur ; Junping Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5503614 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] pouvoir de résolution spectraleRésumé : (auteur) Hypersharpening (namely, hyperspectral (HS) and multispectral (MS) image fusion) aims at enhancing the spatial resolution of HS image via an auxiliary higher resolution MS image. Currently, numerous hypersharpening methods are proposed successively, among which the unmixing-based approaches have been widely researched and demonstrated their effectiveness in the spectral fidelity aspect. However, existing unmixing-based fusion methods substantially employ mathematical techniques to solve the spectral mixture model, without taking full advantage of the collaborative spatial–spectral information that is usually helpful for abundance estimation improvement. To overcome this drawback, in this article, a novel unmixing-based HS and MS image fusion method, via a convolutional neural network (CNN), is proposed to promote spectral fidelity. The main idea of this work is to use CNN to fully explore the spatial information and the spectral information of both HS and MS images simultaneously, thereby enhancing the accuracy of estimating the abundance maps. Experiments on four simulated and real remote sensing data sets demonstrate that the proposed method is beneficial to the spectral fidelity of the fused images compared with some state-of-the-art algorithms. Meanwhile, it is also easy to implement and has a certain advantage in running time. Numéro de notice : A2022-028 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3063105 Date de publication en ligne : 22/03/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3063105 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99264
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 5503614[article]Phase unmixing of TerraSAR-X staring spotlight interferograms in building scale for PS height and deformation / Peng Liu in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)
![]()
[article]
Titre : Phase unmixing of TerraSAR-X staring spotlight interferograms in building scale for PS height and deformation Type de document : Article/Communication Auteurs : Peng Liu, Auteur ; Zhenhong Li, Auteur ; Shisheng Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 14 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] chevauchement
[Termes IGN] Chine
[Termes IGN] discontinuité
[Termes IGN] image radar moirée
[Termes IGN] image TerraSAR-X
[Termes IGN] interféromètrie par radar à antennes synthétiques multiple
[Termes IGN] modèle numérique de surface
[Termes IGN] ombre
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Staring spotlight images with a spatial resolution of up to tens of centimeters are good data sources for urban applications including displacement mapping. However, phase discontinuities, layover, and shadowing effect are also associated with staring spotlight interferograms, adding to the difficulties in height estimation and spatial phase unwrapping. The scattering mechanism of the staring spotlight images in the urban environment is complicated, thus it is difficult to simulate and remove the reference height of staring spotlight interferograms directly. In addition, global spatial phase unwrapping networks tend to smooth phase discontinuities. With the aim of implementing height estimation and phase unwrapping for TerraSAR-X Staring Spotlight interferograms, a workflow for phase unmixing of TerraSAR-X staring spotlight interferograms is proposed in this paper. The PS height is estimated in the baseline domain rather than the spatial domain. Taking into account the length and height change of each connection, the spatial phase unwrapping network is adjusted and segmented into isolated networks. The connected components of the adjusted spatial phase unwrapping network can be identified using graph theory. Spatial phase unwrapping is implemented in individual networks. The unfolded height phase is separated from the unwrapped phase, and the remaining phase is deformation dominated. Compared with the traditional global spatial phase unwrapping method, this study demonstrates the feasibility of the proposed least squares parameter search and graph partition based workflow in urban area, for phase unmixing of TerraSAR-X staring spotlight interferograms in building scale for PS height and deformation, as evidenced by external LiDAR DSM and temperature records. Numéro de notice : A2021-652 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.007 Date de publication en ligne : 14/08/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98382
in ISPRS Journal of photogrammetry and remote sensing > vol 180 (October 2021) . - pp 14 - 28[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021101 SL Revue Centre de documentation Revues en salle Disponible 081-2021103 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Fluvial gravel bar mapping with spectral signal mixture analysis / Liza Stančič in European journal of remote sensing, vol 54 sup 1 (2021)
PermalinkCloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 / Dimitris Poursanidis in Remote sensing in ecology and conservation, vol 7 n° 2 (June 2021)
PermalinkCorrentropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkSpectral variability in hyperspectral unmixing : Multiscale, tensor, and neural network-based approaches / Ricardo Augusto Borsoi (2021)
PermalinkUnmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkMapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
PermalinkHyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection / Zeyang Dou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkMonitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
PermalinkA novel nonlinear hyperspectral unmixing approach for images of oil spills at sea / Ying Li in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
PermalinkAssessing environmental impacts of urban growth using remote sensing / John C. Trinder in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
Permalink