Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > détection de changement
détection de changementVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Robust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Robust unsupervised small area change detection from SAR imagery using deep learning Type de document : Article/Communication Auteurs : Xinzheng Zhang, Auteur ; Hang Su, Auteur ; Ce Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] algorithme de superpixels
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] filtre de déchatoiement
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] ondelette
[Termes descripteurs IGN] reconstruction
[Termes descripteurs IGN] regroupement de donnéesRésumé : (auteur) Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection. Numéro de notice : A2021-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.004 date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96879
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 79 - 94[article]Impact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Impact of forest disturbance on InSAR surface displacement time series Type de document : Article/Communication Auteurs : Paula M. Bürgi, Auteur ; Rowena B. Lohman, Auteur Année de publication : 2021 Article en page(s) : pp 128 - 138 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] détection du signal
[Termes descripteurs IGN] erreur de phase
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] image ALOS
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] retard ionosphèrique
[Termes descripteurs IGN] retard troposphérique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] Sumatra
[Termes descripteurs IGN] surveillance géologiqueRésumé : (auteur) As interferometric synthetic aperture radar (InSAR) data improve in their global coverage and temporal sampling, studies of ground deformation using InSAR are becoming feasible even in heavily vegetated regions such as the American Pacific Northwest (PNW) and Sumatra. However, ongoing forest disturbance due to logging, wildfires, or disease can introduce time-variable signals which could be misinterpreted as ground displacements. This study constrains the error introduced into InSAR time series in the presence of time-variable forest disturbance using synthetic data. For satellite platforms with randomly distributed orbital positions in time (e.g., Sentinel-1), mid-time series forest disturbance results in random error on the order of 0.2 and 10 cm/year for 1-year secular and time-variable velocities, respectively. If the orbital positions are not randomly distributed in time (e.g., ALOS-1), a biased error on the order of 10 cm/year is introduced to the inferred secular velocity. A time series using real ALOS-1 data near Eugene, OR, USA, shows agreement with the bias estimated by synthetic models. Mitigation of time-variable land cover change effects can be achieved if their timing is known, either through independent observations of surface properties (e.g., Landsat/Sentinel-2) or through the use of more computationally expensive, nonlinear inversions with additional terms for the timing of height changes. Inclusion of these additional terms reduces the potential for misinterpretation of InSAR signals associated with land surface change as ground deformation. Numéro de notice : A2021-032 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992938 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992938 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96727
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 128 - 138[article]Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) / Mirza Razi Imam Baig in Annals of GIS, vol 26 n° 4 (December 2020)
![]()
[article]
Titre : Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) Type de document : Article/Communication Auteurs : Mirza Razi Imam Baig, Auteur ; Ishita Afreen Ahmad, Auteur ; Mohammad Tayyab, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 361 - 376 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Andhra Pradesh (Inde ; état)
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] érosion côtière
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance du littoral
[Termes descripteurs IGN] trait de côteRésumé : (auteur) Coastline or Shoreline calculation is one of the important factors in the finding of coastal accretion and erosion and the study of coastal morphodynamic. Coastal erosion is a tentative hazard for communities especially in coastal areas as it is extremely susceptible to increasing coastal disasters. The study has been conducted along the coast of Vishakhapatnam district, Andhra Pradesh, India with the help of multi-temporal satellite images of 1991 2001, 2011 and 2018. The continuing coastal erosion and accretion rates have been calculated using the Digital Shoreline Analysis System (DSAS). Linear regression rate (LRR), End Point Rate (EPR) and Weighted Linear Regression (WLR) are used for calculating shoreline change rate. Based on calculations the district shoreline has been classified into five categories as high and low erosion, no change and high and low accretion. Out of 135 km, high erosion occupied 5.8 km of coast followed by moderate or low erosion 46.2 km. Almost 34.7 km coastal length showed little or no change. Moderate accretion is found along 30.5 km whereas high accretion trend found around 17.8 km. The outcome of shows that erosion is prevailing in Vishakhapatnam taluk, Ankapalli taluk, Yellamanchili taluk whereas most of the Bhemunipatnam coast is accreting. Natural and manmade activities and phenomena influence the coastal areas in terms of erosion and accretion. The study could be used for further planning and development and also for disaster management authority in the decision-making process in the study area. Numéro de notice : A2020-801 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1815839 date de publication en ligne : 09/10/2020 En ligne : https://doi.org/10.1080/19475683.2020.1815839 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96724
in Annals of GIS > vol 26 n° 4 (December 2020) . - pp 361 - 376[article]A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data Type de document : Article/Communication Auteurs : Minkyung Chung, Auteur ; Youkyung Han, Auteur ; Yongil Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] flou
[Termes descripteurs IGN] gestion des risques
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] Normalized Difference Vegetation IndexRésumé : (auteur) The application of remote sensing techniques for disaster management often requires rapid damage assessment to support decision-making for post-treatment activities. As the on-demand acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution pre-event images. In this study, we propose an unsupervised change detection framework that uses post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize the time and cost of human intervention, the entire process was executed in an unsupervised manner from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training data were automatically generated from contextual features regardless of the statistical distribution of the data, whereas spectral and textural features were employed in the change detection procedure to fully exploit the properties of different features. The proposed method was validated in a case study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS images. The experimental results verified the effectiveness of the proposed change detection method, achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to the accuracy level of the supervised approach. The proposed unsupervised framework accomplished efficient wildfire damage assessment without any prior information by utilizing the multiple features from multi-sensor bi-temporal images. Numéro de notice : A2020-793 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223835 date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223835 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96570
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3835[article]Semantic trajectory segmentation based on change-point detection and ontology / Yuan Gao in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Semantic trajectory segmentation based on change-point detection and ontology Type de document : Article/Communication Auteurs : Yuan Gao, Auteur ; Longfei Huang, Auteur ; Jun Feng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2361 - 2394 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cible mobile
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] information sémantique
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] ontologie
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] probabilité
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] trajectoireRésumé : (auteur) Trajectory segmentation is a fundamental issue in GPS trajectory analytics. The task of dividing a raw trajectory into reasonable sub-trajectories and annotating them based on moving subject’s intentions and application domains remains a challenge. This is due to the highly dynamic nature of individuals’ patterns of movement and the complex relationships between such patterns and surrounding points of interest. In this paper, we present a framework called SEMANTIC-SEG for automatic semantic segmentation of trajectories from GPS readings. For the decomposition component of SEMANTIC-SEG, a moving pattern change detection (MPCD) algorithm is proposed to divide the raw trajectory into segments that are homogeneous in their movement conditions. A generic ontology and a spatiotemporal probability model for segmentation are then introduced to implement a bottom-up ontology-based reasoning for semantic enrichment. The experimental results on three real-world datasets show that MPCD can more effectively identify the semantically significant change-points in a pattern of movement than four existing baseline methods. Moreover, experiments are conducted to demonstrate how the proposed SEMANTIC-SEG framework can be applied. Numéro de notice : A2020-689 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1798966 date de publication en ligne : 04/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1798966 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96226
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2361 - 2394[article]Détection du changement de l'étalement urbain au bas-Sahara algérien : apport de la télédétection spatiale et des SIG, cas de la ville de Biskra (Algérie) / Assoule Dechaicha in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkBuilding change detection using a shape context similarity model for LiDAR data / Xuzhe Lyu in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkA fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkUncertainty of forested wetland maps derived from aerial photography / Stephen P. Prisley in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
PermalinkWide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1 / Dirk Hoekman in Remote sensing, vol 12 n° 19 (October 2020)
PermalinkApplying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
PermalinkArctic tsunamis threaten coastal landscapes and communities – survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland / Mateusz C. Strzelecki in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
PermalinkA spaceborne SAR-based procedure to support the detection of landslides / Giuseppe Esposito in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
PermalinkNear-real time forecasting and change detection for an open ecosystem with complex natural dynamics / Jasper A. Slingsby in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkRecent changes in two outlet glaciers in the Antarctic Peninsula using multi-temporal Landsat and Sentinel-1 data / Carolina L. Simões in Geocarto international, vol 35 n° 11 ([01/08/2020])
Permalink