Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > extraction de traits caractéristiques
extraction de traits caractéristiquesSynonyme(s)extraction des caractéristiques extraction de primitiveVoir aussi |
Documents disponibles dans cette catégorie (844)


Etendre la recherche sur niveau(x) vers le bas
SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
![]()
[article]
Titre : SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Wenting Luo, Auteur ; Anqi Lin, Auteur ; Fanghua Hao, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Lanfa Liu, Auteur ; Yan Li, Auteur
Année de publication : 2023 Projets : 1-Pas de projet / Article en page(s) : n° 101921 Note générale : Bibliographie
This work was supported by the National Natural Science Foundation of China [42201468, 42071358], Postdoctoral Innovation Talents Support Program of China [BX20220128], China Postdoctoral Science Foundation [2022M721283] and Fundamental Research Funds for the Central Universities [CCNU22QN018].Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] représentation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks. Numéro de notice : A2023-125 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101921 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102504
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101921[article]A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)
![]()
[article]
Titre : A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Xin Huang, Auteur ; Yujin Feng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5600812 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] approche hiérarchique
[Termes IGN] carte de profondeur
[Termes IGN] déformation d'objet
[Termes IGN] effet de profondeur cinétique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne
[Termes IGN] jeu de données
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconstruction d'image
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Multiview stereo (MVS) aerial image depth estimation is a research frontier in the remote sensing field. Recent deep learning-based advances in close-range object reconstruction have suggested the great potential of this approach. Meanwhile, the deformation problem and the scale variation issue are also worthy of attention. These characteristics of aerial images limit the applicability of the current methods for aerial image depth estimation. Moreover, there are few available benchmark datasets for aerial image depth estimation. In this regard, this article describes a new benchmark dataset called the LuoJia-MVS dataset ( https://irsip.whu.edu.cn/resources/resources_en_v2.php ), as well as a new deep neural network known as the hierarchical deformable cascade MVS network (HDC-MVSNet). The LuoJia-MVS dataset contains 7972 five-view images with a spatial resolution of 10 cm, pixel-wise depths, and precise camera parameters, and was generated from an accurate digital surface model (DSM) built from thousands of stereo aerial images. In the HDC-MVSNet network, a new full-scale feature pyramid extraction module, a hierarchical set of 3-D convolutional blocks, and “true 3-D” deformable 3-D convolutional layers are specifically designed by considering the aforementioned characteristics of aerial images. Overall and ablation experiments on the WHU and LuoJia-MVS datasets validated the superiority of HDC-MVSNet over the current state-of-the-art MVS depth estimation methods and confirmed that the newly built dataset can provide an effective benchmark. Numéro de notice : A2023-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3234694 En ligne : https://doi.org/10.1109/TGRS.2023.3234694 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102488
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 1 (January 2023) . - n° 5600812[article]Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach / Shenglong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
![]()
[article]
Titre : Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach Type de document : Article/Communication Auteurs : Shenglong Chen, Auteur ; Yoshiki Ogawa, Auteur ; Chenbo Zhao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 129 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couleur (variable spectrale)
[Termes IGN] détection du bâti
[Termes IGN] distribution de Gauss
[Termes IGN] image à haute résolution
[Termes IGN] mosaïquage d'images
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Building footprint is a primary dataset of an urban geographic information system (GIS) database. Therefore, it is essential to establish a robust and automated framework for large-scale building extraction. However, the characteristic of remote sensing images complicates the application of the instance segmentation method based on the Mask R-CNN model, which ought to be improved toward extracting and fusing multi-scale features. Moreover, open-source satellite image datasets with wider spatial coverage and temporal resolution than high-resolution images may exhibit different coloration and resolution. This study proposes a large-scale building extraction framework based on super-resolution (SR) and instance segmentation using a relatively lower-resolution (>0.6 m) open-sourced dataset. The framework comprises four steps: color normalization and image super-resolution, scene classification, building extraction, and scene mosaicking. We took Hyogo Prefecture, Japan (19,187 km2) as a test area and extracted 1,726,006 (29.12 km2) of the 3,301,488 buildings (32.46 km2), where the number of buildings and footprint area increased by 3.0 % and 5.0 % respectively. The result indicated that the color normalization and image super-resolution could improve the visual quality of open-source satellite images and contribute to building extraction accuracy. Moreover, the improved Mask R-CNN based on Multi-Path Vision Transformer (MPViT) backbone achieved F1 scores of 0.71, 0.70, 0.81, and 0.67 for non-built-up, rural, suburban, and urban areas, respectively, which is better than those of the baseline model and other mainstream instance segmentation approaches. This study demonstrates the potential of acquiring acceptable building footprint maps from open-source satellite images, which has significant practical implications. Numéro de notice : A2023-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.006 Date de publication en ligne : 30/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102214
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 129 - 152[article]Linear building pattern recognition in topographical maps combining convex polygon decomposition / Zhiwei Wei in Geocarto international, vol 38 n° inconnu ([01/01/2023])
![]()
[article]
Titre : Linear building pattern recognition in topographical maps combining convex polygon decomposition Type de document : Article/Communication Auteurs : Zhiwei Wei, Auteur ; Su Ding, Auteur ; Lu Cheng, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte topographique
[Termes IGN] construction
[Termes IGN] décomposition
[Termes IGN] détection du bâti
[Termes IGN] forme linéaire
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] Ordnance Survey (UK)
[Termes IGN] polygone
[Termes IGN] reconnaissance de formesRésumé : (auteur) Building patterns are crucial for urban form understanding, automated map generalization, and 3 D city model visualization. The existing studies have recognized various building patterns based on visual perception rules in which buildings are considered as a whole. However, some visually aware patterns may fail to be recognized with these approaches because human vision is also proved as a part-based system. This paper first proposed an approach for linear building pattern recognition combining convex polygon decomposition. Linear building patterns including collinear patterns and curvilinear patterns are defined according to the proximity, similarity, and continuity between buildings. Linear building patterns are then recognized by combining convex polygon decomposition, in which a building can be decomposed into sub-buildings for pattern recognition. A novel node concavity is developed based on polygon skeletons which is applicable for building polygons with holes or not in the building decomposition. And building’s orthogonal features are also considered in the building decomposition. Two datasets collected from Ordnance Survey (OS) were used in the experiments to verify the effectiveness of the proposed approach. The results indicate that our approach achieves 25.57% higher precision and 32.23% higher recall in collinear pattern recognition and 15.67% higher precision and 18.52% higher recall in curvilinear pattern recognition when compared to existing approaches. Recognition of other kinds of building patterns including T-shaped and C-shaped patterns combining convex polygon decomposition are also discussed in this approach. Numéro de notice : A2022-263 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2055794 Date de publication en ligne : 27/03/2022 En ligne : https://doi.org/10.1080/10106049.2022.2055794 Format de la ressource électronique : 27/03/2022 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100260
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination / Kaili Zhang in Geocarto international, vol 38 n° 1 ([01/01/2023])
![]()
[article]
Titre : A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination Type de document : Article/Communication Auteurs : Kaili Zhang, Auteur ; Yonggang Chen, Auteur ; Wentao Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2158948 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spatiale
[Termes IGN] analyse spectrale
[Termes IGN] classification Spectral angle mapper
[Termes IGN] classification spectrale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données vectorielles
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] pixel
[Termes IGN] précision de la classification
[Termes IGN] signature texturale
[Termes IGN] similitude spectrale
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) In the study of remote sensing image classification, feature extraction and selection is an effective method to distinguish different classification targets. Constructing a high-quality spectral-spatial feature and feature combination has been a worthwhile topic for improving classification accuracy. In this context, this study constructed a spectral-spatial feature, namely the Pixel Neighbourhood Similarity (PNS) index. Meanwhile, the PNS index and 19 spectral, textural and terrain features were involved in the Correlation-based Feature Selection (CFS) algorithm for feature selection to generate a feature combination (PNS-CFS). To explore how PNS and PNS-CFS improve the classification accuracy of land types. The results show that: (1) The PNS index exhibited clear boundaries between different land types. The performance quality of PNS was relatively highest compared to other spectral-spatial features, namely the Vector Similarity (VS) index, the Change Vector Intensity (CVI) index and the Correlation (COR) index. (2) The Overall Accuracy (OA) of the PNS-CFS was 94.66% and 93.59% in study areas 1 and 2, respectively. These were 7.48% and 6.02% higher than the original image data (ORI) and 7.27% and 2.39% higher than the single-dimensional feature combination (SIN-CFS). Compared to the feature combinations of VS, CVI, and COR indices (VS-CFS, CVI-COM, COR-COM), PNS-CFS had the relatively highest performance and classification accuracy. The study demonstrated that the PNS index and PNS-CFS have a high potential for image classification. Numéro de notice : A2023-059 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2158948 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2158948 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102397
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2158948[article]Prototype-guided multitask adversarial network for cross-domain LiDAR point clouds semantic segmentation / Zhimin Yuan in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)
PermalinkAutomatic registration method of multi-source point clouds based on building facades matching in urban scenes / Yumin Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
PermalinkAutomatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
PermalinkExtracting built-up land area of airports in China using Sentinel-2 imagery through deep learning / Fanxuan Zeng in Geocarto international, vol 37 n° 25 ([01/12/2022])
PermalinkA semi-automatic method for extraction of urban features by integrating aerial images and LIDAR data and comparing its performance in areas with different feature structures (case study: comparison of the method performance in Isfahan and Toronto) / Masoud Azad in Applied geomatics, vol 14 n° 4 (December 2022)
PermalinkAn unsupervised framework for extracting multilane roads from OpenStreetMap / Kunkun Wu in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
PermalinkForeground-aware refinement network for building extraction from remote sensing images / Zhang Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 11 (November 2022)
PermalinkGA-Net: A geometry prior assisted neural network for road extraction / Xin Chen in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
PermalinkGraph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
PermalinkImproving image segmentation with boundary patch refinement / Xiaolin Hu in International journal of computer vision, vol 130 n° 11 (November 2022)
Permalink