Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > extraction de traits caractéristiques
extraction de traits caractéristiquesSynonyme(s)extraction des caractéristiques extraction de primitiveVoir aussi |


Etendre la recherche sur niveau(x) vers le bas
Automatic filtering and 2D modeling of airborne laser scanning building point cloud / Fayez Tarsha-Kurdi in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : Automatic filtering and 2D modeling of airborne laser scanning building point cloud Type de document : Article/Communication Auteurs : Fayez Tarsha-Kurdi, Auteur ; Mohammad Awrangjeb, Auteur ; Nosheen Munir, Auteur Année de publication : 2021 Article en page(s) : pp 164 - 188 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme de filtrage
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] modélisation 2D
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] toitRésumé : (Auteur) This article suggests a new approach to automatic building footprint modeling using exclusively airborne LiDAR data. The first part of the suggested approach is the filtering of the building point cloud using the bias of the Z‐coordinate histogram. This operation aims to detect the points of roof class from the building point cloud. Hence, eight rules for histogram interpretation are suggested. The second part of the suggested approach is the roof modeling algorithm. It starts by detecting the roof planes and calculating their adjacency matrix. Hence, the roof plane boundaries are classified into four categories: (1) outer boundary; (2) inner plane boundaries; (3) roof detail boundaries; and (4) boundaries related to the missing planes. Finally, the junction relationships of roof plane boundaries are analyzed for detecting the roof vertices. With regard to the resulting accuracy quantification, the average values of the correctness and the completeness indices are employed in both approaches. In the filtering algorithm, their values are respectively equal to 97.5 and 98.6%, whereas they are equal to 94.0 and 94.0% in the modeling approach. These results reflect the high efficacy of the suggested approach. Numéro de notice : A2021-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12685 date de publication en ligne : 11/09/2020 En ligne : https://doi.org/10.1111/tgis.12685 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97154
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 164 - 188[article]Curved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives / Jingwei Song in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Curved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives Type de document : Article/Communication Auteurs : Jingwei Song, Auteur ; Shaobo Xia, Auteur ; Jun Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1660 - 1674 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] courbe
[Termes descripteurs IGN] déformation géométrique
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] primitive géométrique
[Termes descripteurs IGN] reconstruction 3D du bâti
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] stockage de donnéesNuméro de notice : A2021-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2995732 date de publication en ligne : 08/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2995732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96931
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1660 - 1674[article]SAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : SAR image speckle reduction based on nonconvex hybrid total variation model Type de document : Article/Communication Auteurs : Yuli Sun, Auteur ; Lin Lei, Auteur ; Dongdong Guan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1231 - 1249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] artefact
[Termes descripteurs IGN] chatoiement
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] distribution de Fisher
[Termes descripteurs IGN] gradient
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] régularisation d'image
[Termes descripteurs IGN] variableRésumé : (auteur) Speckle noise inherent in synthetic aperture radar (SAR) images seriously affects the visual effect and brings great difficulties to the postprocessing of the SAR image. Due to the edge-preserving feature, total variation (TV) regularization-based techniques have been extensively utilized to reduce the speckle. However, the strong scatters in SAR image with radiometry several orders of magnitude larger than their surrounding regions limit the effectiveness of TV regularization. Meanwhile, the ℓ1 -norm first-order TV regularization sometimes causes staircase artifacts as it favors solutions that are piecewise constant, and it usually underestimates high-amplitude components of image gradient as the ℓ1 -norm uniformly penalizes the amplitude. To overcome these shortcomings, a new hybrid variation model, called Fisher–Tippett (FT) distribution- ℓp -norm first-and second-order hybrid TVs (HTpVs), is proposed to reduce the speckle after removing the strong scatters. Especially, the FT-HTpV inherits the advantages of the distribution based data fidelity term, the nonconvex regularization, and the higher order TV regularization. Therefore, it can effectively remove the speckle while preserving point scatters and edges and reducing staircase artifacts well. To efficiently solve the nonconvex minimization problem, an iterative framework with a nonmonotone-accelerated proximal gradient (nmAPG) method and a matrix-vector acceleration strategy are used. Extensive experiments on both the simulated and real SAR images demonstrate the effectiveness of the proposed method. Numéro de notice : A2021-114 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002561 date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002561 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96924
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1231 - 1249[article]Building extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
![]()
[article]
Titre : Building extraction from Lidar data using statistical methods Type de document : Article/Communication Auteurs : Haval Abdul-Jabbar Sadeq, Auteur Année de publication : 2021 Article en page(s) : pp 33 - 42 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) In this article, a straightforward, intuitive method for lidar data classification and building extraction, based on statistical analysis, is presented. The classification of the point cloud into ground and nonground is begun by individually testing each point within the point cloud using the statistical mean height. In this operation, various window sizes are specified, and the mean is obtained at each size. The points that are above the mean are saved and divided by the number of windows to obtain the proportion. Points are considered non-ground if their proportion is higher than the assigned threshold, and otherwise ground. An algorithm for classifying the obtained nonground point cloud into buildings and trees is also illustrated in this article. First the nonground points are labeled, then each label is tested individually. The process begins with segmenting each label. Then comes testing of whether each segment of points can be fitted within a specific plane. The label of the point cloud is considered a building if the number of segments considered as planes is larger than those considered as nonplanes; otherwise it is classified as a tree. Numéro de notice : A2021-055 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.14358/PERS.87.1.33 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96760
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 1 (January 2021) . - pp 33 - 42[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021011 SL Revue Centre de documentation Revues en salle Disponible Connecting images through time and sources: Introducing low-data, heterogeneous instance retrieval / Dimitri Gominski (2021)
![]()
Titre : Connecting images through time and sources: Introducing low-data, heterogeneous instance retrieval Type de document : Article/Communication Auteurs : Dimitri Gominski , Auteur ; Valérie Gouet-Brunet
, Auteur ; Liming Chen, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2021 Projets : Alegoria / Gouet-Brunet, Valérie Importance : 5 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] base de données d'images
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] descripteur
[Termes descripteurs IGN] données d'apprentissage
[Termes descripteurs IGN] données hétérogènes
[Termes descripteurs IGN] exploration de données
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image multi sources
[Termes descripteurs IGN] indexation sémantique
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] recherche d'image basée sur le contenuRésumé : (auteur) With impressive results in applications relying on feature learning, deep learning has also blurred the line between algorithm and data. Pick a training dataset, pick a backbone network for feature extraction, and voilà; this usually works fora variety of use cases. But the underlying hypothesis that there exists a training dataset matching the use case is not alwaysmet. Moreover, the demand for interconnections regardless of the variations of the content calls for increasing generalization and robustness in features. An interesting application characterized by these problematics is the connection of historical and cultural databases of images.Through the seemingly simple task of instance retrieval, wepropose to show that it is not trivial to pick features respondingwell to a panel of variations and semantic content. Introducing anew enhanced version of the ALEGORIA benchmark, we compare descriptors using the detailed annotations. We further give in sights about the core problems in instance retrieval, testing fourstate-of-the-art additional techniques to increase performance. Numéro de notice : P2021-004 Affiliation des auteurs : UGE-LaSTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Preprint nature-HAL : Préprint DOI : sans date de publication en ligne : 21/03/2021 En ligne : https://arxiv.org/pdf/2103.10729.pdf Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97398 Extraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkFuNet: A novel road extraction network with fusion of location data and remote sensing imagery / Kai Zhou in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
PermalinkImage matching from handcrafted to deep features: A survey / Jiayi Ma in International journal of computer vision, vol 29 n° 1 (January 2021)
PermalinkLANet: Local attention embedding to improve the semantic segmentation of remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkRelation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkSteps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery / Debasish Chakraborty in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkAutomatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
PermalinkChoosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkMS-RRFSegNetMultiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds / Haifeng Luo in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
Permalink