Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > extraction de traits caractéristiques
extraction de traits caractéristiquesSynonyme(s)extraction des caractéristiques extraction de primitiveVoir aussi |


Etendre la recherche sur niveau(x) vers le bas
Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method Type de document : Article/Communication Auteurs : Vijendra Singh Bramhe, Auteur ; Sanjay Kumar Ghosh, Auteur ; Pradeep Kumar Garg, Auteur Année de publication : 2020 Article en page(s) : pp 1067 - 1087 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] texture d'imageRésumé : (auteur) Information of built-up area is essential for various applications, such as sustainable development or urban planning. Built-up area extraction using optical data is challenging due to spectral confusion between built-up and other classes (bare land or river sand, etc.). Here an automated approach has been proposed to generate built-up maps using spectral-textural features and feature selection techniques. Eight Grey-Level Co-Occurrence Matrix based texture features are extracted using Landsat-8 Operational Land Imager bands and combined with multispectral data. The most informative features are selected from combined spectral-textural dataset using feature selection techniques. Further, Support Vector Machine (SVM) classifiers are trained on labelled samples using optimal features and results are compared with Back Propagation-Neural Network (BP-NN) and k-Nearest Neighbour (k-NN). The results show that inclusion of textural features and applying feature selection methods increases the highest overall accuracy of Linear-SVM, RBF-SVM, BP-NN, and k-NN by 9.20%, 9.09%, 8.42%, and 7.39%, respectively. Numéro de notice : A2020-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1566406 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566406 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95489
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1067 - 1087[article]Extraction of urban built-up areas from nighttime lights using artificial neural network / Tingting Xu in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Extraction of urban built-up areas from nighttime lights using artificial neural network Type de document : Article/Communication Auteurs : Tingting Xu, Auteur ; Giovanni Coco, Auteur ; Jay Gao, Auteur Année de publication : 2020 Article en page(s) : pp 1049 - 1066 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] aménagement du territoire
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] développement durable
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] éclairage public
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] rayonnement lumineux
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] seuillage
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) The spatial distribution of urban areas at the national and regional scales is critical for urban planners and governments to design sustainable and environment-friendly future development plans. The nighttime lights (NTL) data provide an effective way to monitor the urban at different scales however is usually achieved by using empirical threshold-based algorithms. This study proposed a novel Artificial Neural Network (ANN) approach, using moderate resolution imageries as NTL, MODIS NDVI and land surface temperature data, to map urban areas. Both random and maximum dissimilarity distance algorithm sampling methods were considered and compared. The validation of the urban areas extracted from MDA-based ANN against the 2011 US national land cover data showed a reasonable quality (overall accuracy = 97.84; Kappa = 0.74) and achieved more accurate result than the threshold method. This study demonstrates that ANN can provide an effective, rapid, and accurate alternative in extracting urban built-up areas from NTL. Numéro de notice : A2020-424 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1559887 date de publication en ligne : 21/03/2019 En ligne : https://doi.org/10.1080/10106049.2018.1559887 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95488
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1049 - 1066[article]Classification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : Classification of hyperspectral and LiDAR data using coupled CNNs Type de document : Article/Communication Auteurs : Renlong Hang, Auteur ; Zhu Li, Auteur ; Pedram Ghamisi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4939 - 4950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données hétérogènes
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] Houston (Texas)
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Perceptron multicouche
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] Trente
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) In this article, we propose an efficient and effective framework to fuse hyperspectral and light detection and ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral–spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter-sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy (OA) of 96.03%. On the Trento data, it achieves an OA of 99.12%. These results sufficiently certify the effectiveness of our proposed model. Numéro de notice : A2020-391 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2969024 date de publication en ligne : 06/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2969024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95374
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4939 - 4950[article]Semi-automatic identification of submarine pipelines with synthetic aperture sonar Images / Victor Hugo Fernandes in Marine geodesy, Vol 43 n° 4 (July 2020)
![]()
[article]
Titre : Semi-automatic identification of submarine pipelines with synthetic aperture sonar Images Type de document : Article/Communication Auteurs : Victor Hugo Fernandes, Auteur ; Nilcilene Das Graças Medeiros, Auteur ; Dalto Domingues Rodrigues, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 376 - 395 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes descripteurs IGN] canalisation
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] scène sous-marine
[Termes descripteurs IGN] sonarRésumé : (Auteur) Synthetic Aperture Sonar (SAS) is a sensor that was designed for hydrographic survey of the seabed. It detects small targets, enabling high geometric resolution images. However, the images generated by SAS are susceptible to speckle noise, which makes digital processing difficult, since the noises are confused with the targets of interest. The goal of this study was to develop a semi-automatic routine for SAS image processing to verify the structural integrity of submarine pipelines. The method presented incorporates four stages: pre-processing to reduce noise and highlight the targets of interest; extraction of features aiming to recognize features related to the pipelines; post-processing to reduce the fragmentation generated during feature extraction; validation to quantify the results from the reference images to estimate the performance of the proposed methodology. The results showed that more than 80% of the submarine pipelines were mapped in the semi-automatic mode, which considerably reduced the time needed to manually identify a large number of pipelines operating on offshore oilfields. Numéro de notice : A2020-248 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01490419.2020.1755916 date de publication en ligne : 25/04/2020 En ligne : https://doi.org/10.1080/01490419.2020.1755916 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95362
in Marine geodesy > Vol 43 n° 4 (July 2020) . - pp 376 - 395[article]Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata / Yaqian Zhai in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
![]()
[article]
Titre : Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata Type de document : Article/Communication Auteurs : Yaqian Zhai, Auteur ; Yao Yao, Auteur ; Qingfeng Guan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1475 - 1499 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] morphologie
[Termes descripteurs IGN] parcelle cadastrale
[Termes descripteurs IGN] petite échelle
[Termes descripteurs IGN] planification urbaine
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] Shenzhen
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) Vector-based cellular automata (VCA) models have been applied in land use change simulations at fine scales. However, the neighborhood effects of the driving factors are rarely considered in the exploration of the transition suitability of cells, leading to lower simulation accuracy. This study proposes a convolutional neural network (CNN)-VCA model that adopts the CNN to extract the high-level features of the driving factors within a neighborhood of an irregularly shaped cell and discover the relationships between multiple land use changes and driving factors at the neighborhood level. The proposed model was applied to simulate urban land use changes in Shenzhen, China. Compared with several VCA models using other machine learning methods, the proposed CNN-VCA model obtained the highest simulation accuracy (figure-of-merit = 0.361). The results indicated that the CNN-VCA model can effectively uncover the neighborhood effects of multiple driving factors on the developmental potential of land parcels and obtain more details on the morphological characteristics of land parcels. Moreover, the land use patterns of 2020 and 2025 under an ecological control strategy were simulated to provide decision support for urban planning. Numéro de notice : A2020-307 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1711915 date de publication en ligne : 14/01/2020 En ligne : https://doi.org/10.1080/13658816.2020.1711915 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95149
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1475 - 1499[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 SL Revue Centre de documentation Revues en salle Disponible Counting of grapevine berries in images via semantic segmentation using convolutional neural networks / Laura Zabawa in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
PermalinkIndoor positioning using PnP problem on mobile phone images / Hana Kubickova in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkObject-based automatic multi-index built-up areas extraction method for WorldView-2 satellite imagery / Zhenhui Sun in Geocarto international, Vol 35 n° 8 ([01/06/2020])
PermalinkA water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkAutomatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks / Mahmoud Saeedimoghaddam in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
PermalinkA convolutional neural network with mapping layers for hyperspectral image classification / Rui Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkOutlier detection and robust plane fitting for building roof extraction from LiDAR data / Emon Kumar Dey in International Journal of Remote Sensing IJRS, vol 41 n°16 (01-10 May 2020)
PermalinkA point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkSemantic signatures for large-scale visual localization / Li Weng in Multimedia tools and applications, vol inconnu (2020)
PermalinkAutomated terrain feature identification from remote sensing imagery: a deep learning approach / Wenwen Li in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
Permalink