Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > extraction de traits caractéristiques
extraction de traits caractéristiquesSynonyme(s)extraction des caractéristiques extraction de primitiveVoir aussi |


Etendre la recherche sur niveau(x) vers le bas
Building Extraction from High-Resolution Remote Sensing Images Based on GrabCut with Automatic Selection of Foreground and Background Samples / Ka Zhang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 4 (April 2020)
![]()
[article]
Titre : Building Extraction from High-Resolution Remote Sensing Images Based on GrabCut with Automatic Selection of Foreground and Background Samples Type de document : Article/Communication Auteurs : Ka Zhang, Auteur ; Hui Chen, Auteur ; Wen Xiao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 235 - 245 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] segmentation d'imageRésumé : (Auteur) This article proposes a new building extraction method from high-resolution remote sensing images, based on GrabCut, which can automatically select foreground and background samples under the constraints of building elevation contour lines. First the image is rotated according to the direction of pixel displacement calculated by the rational function Model. Second, the Canny operator, combined with morphology and the Hough transform, is used to extract the building's elevation contour lines. Third, seed points and interesting points of the building are selected under the constraint of the contour line and the geodesic distance. Then foreground and background samples are obtained according to these points. Fourth, GrabCut and geometric features are used to carry out image segmentation and extract buildings. Finally, WorldView satellite images are used to verify the proposed method. Experimental results show that the average accuracy can reach 86.34%, which is 15.12% higher than other building extraction methods. Numéro de notice : A2020-128 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.4.235 date de publication en ligne : 01/04/2020 En ligne : https://doi.org/10.14358/PERS.86.4.235 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94797
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 4 (April 2020) . - pp 235 - 245[article]Dimension reduction methods applied to coastline extraction on hyperspectral imagery / Ozan Arslan in Geocarto international, vol 35 n° 4 ([15/03/2020])
![]()
[article]
Titre : Dimension reduction methods applied to coastline extraction on hyperspectral imagery Type de document : Article/Communication Auteurs : Ozan Arslan, Auteur ; özer Akyürek, Auteur ; Sinasi Kaya, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 376 - 390 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse en composantes principales
[Termes descripteurs IGN] Bosphore
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] extraction
[Termes descripteurs IGN] image EO1-Hyperion
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] Istanbul (Turquie)
[Termes descripteurs IGN] littoral
[Termes descripteurs IGN] rapport signal sur bruit
[Termes descripteurs IGN] réduction
[Termes descripteurs IGN] télédétection
[Termes descripteurs IGN] trait de côteRésumé : (auteur) In this study, dimensionality reduction (DR) methods on a hyperspectral dataset to explore the influence on the process of extraction of coastlines were examined and performance of different DR algorithms on the detection of coastline in Bosphorus, Istanbul was investigated. Among these methods, principal component (PC) analysis, maximum noise fraction and independent component (IC) analysis were used in the experiments with the aim of comparing. The study was carried out using these well-known DR techniques on a real hyperspectral image, an Hyperion data set with 161 bands, in the course of the experiments. Three different classifiers (i.e. ML, SVM and neural network) were used for the classification of dimensionally reduced and original images to detect coastline in the region. The DR results were evaluated quantitatively and visually in order to determine the reduced dimensions of the image subsets. Findings show that there is no significant influence of using DR methods on the dataset on the detection of coastline. Numéro de notice : A2020-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520920 date de publication en ligne : 22/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1520920 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94690
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 376 - 390[article]An improved RANSAC algorithm for extracting roof planes from airborne lidar data / Sibel Canaz Sevgen in Photogrammetric record, vol 35 n° 169 (March 2020)
![]()
[article]
Titre : An improved RANSAC algorithm for extracting roof planes from airborne lidar data Type de document : Article/Communication Auteurs : Sibel Canaz Sevgen, Auteur ; Fevzi Karsli, Auteur Année de publication : 2020 Article en page(s) : pp 40 - 57 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Algorithmique
[Termes descripteurs IGN] bord décollé (toit)
[Termes descripteurs IGN] contrôle qualité
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] segmentation en régions
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) The extraction of building roof planes from lidar data has become a popular research topic with random sample consensus (RANSAC) being one of the most commonly adopted algorithms. RANSAC extracts full planes, which is problematic when there are other points outside the plane boundary but within the plane space. This study proposes an improved RANSAC (I‐RANSAC) algorithm by removing points that do not belong to the roof plane. I‐RANSAC selects a random point from the extracted roof plane and then searches for its neighbours within a given threshold to identify and remove outliers. The new algorithm was tested with 14 buildings from two datasets, where quality control measures showed significant improvement over standard RANSAC. Numéro de notice : A2020-131 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Numéro de périodique nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12296 date de publication en ligne : 13/11/2019 En ligne : https://doi.org/10.1111/phor.12296 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94815
in Photogrammetric record > vol 35 n° 169 (March 2020) . - pp 40 - 57[article]Assessing the shape accuracy of coarse resolution burned area identifications / Michael L. Humber in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
![]()
[article]
Titre : Assessing the shape accuracy of coarse resolution burned area identifications Type de document : Article/Communication Auteurs : Michael L. Humber, Auteur ; Luigi Boschetti, Auteur ; Louis Giglio, Auteur Année de publication : 2020 Article en page(s) : pp 1516 - 1526 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aménagement paysager
[Termes descripteurs IGN] appariement de formes
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] chevauchement
[Termes descripteurs IGN] écologie
[Termes descripteurs IGN] estimation de précision
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] précision cartographique
[Termes descripteurs IGN] surveillance forestièreRésumé : (Auteur) Accuracy assessment of burned area maps has been traditionally performed using pixel-based metrics, with the objective of assessing the accuracy and precision of burned area estimates at local and regional scales. While these assessments are helpful for obtaining consistent estimates of the burned area across many fires and over large areas, pixel-based approaches do not necessarily characterize how well individual fires are mapped. At the individual fire scale, other factors like the shape of the fire have significance regarding ecology, fire succession, and landscape management and determining other fire properties such as the spread rate. We propose a method for evaluating wildfire classification maps, which retains the spatially explicit properties of the burn scar. Our method quantifies the edge error (EE) of burned area classifications and reference maps by calculating the average geometric normal of the evaluated burned area boundary along the burn edge and the two nearest neighbor samples from the reference burn boundary. The metric is a physically meaningful quantification of the EE, which represents the average distance between the boundaries of the reference and evaluated burn scars. The methods are demonstrated by comparing MODIS Burned Area (MCD64A1) maps to Monitoring Trends in Burn Severity (MTBS) maps for 173 total wildfires in the United States. The results indicate that when accounting for the minimum achievable EE (MAEE) due to differing spatial resolutions, the mean EE is less than two MODIS pixels and the magnitude of the errors does not appear to be related to fire size. Numéro de notice : A2020-085 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2943901 date de publication en ligne : 13/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2943901 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94659
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1516 - 1526[article]A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data / Qingwang Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
![]()
[article]
Titre : A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data Type de document : Article/Communication Auteurs : Qingwang Wang, Auteur ; Yanfeng Gu, Auteur Année de publication : 2020 Article en page(s) : pp 1568 -1586 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] Amérique du nord
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] calcul tensoriel
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification multibande
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] état de l'art
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] modèle géométrique
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] tenseur
[Termes descripteurs IGN] vectorisation
[Termes descripteurs IGN] voisinage (topologie)Résumé : (Auteur) Multispectral light detection and ranging (MS-LiDAR) systems open the door to the possibility in the 3-D land cover classification at a finer scale using only point cloud data. This article proposes a model based on the tensor representation for multispectral point cloud classification. The proposed method combines the 3-D local spatial structure of each multispectral point by characterizing the point with a second-order tensor. The first mode of the tensor indicates the spatial location and spectral information of each point (i.e., the row of the second-order tensor) and the second mode denotes the neighborhood geometric and spectral structures (i.e., the column of the second-order tensor). Then we develop a novel tensor manifold discriminant embedding (TMDE) algorithm to extract the geometric–spectral features for multispectral point clouds classification. TMDE solves the mapping matrices of each mode by preserving the intraclass samples’ distribution further making it more compact and maximizing the distance of different classes. Finally, the support vector machine classifier with the extracted features as input is used to implement the classification of multispectral point clouds. Experiments are conducted on two real multispectral point cloud data sets. The experimental results demonstrate that the proposed method can achieve significant improvements in classification accuracies in comparison with several state-of-the-art algorithms. Numéro de notice : A2020-086 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947081 date de publication en ligne : 30/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947081 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94660
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1568 -1586[article]Edge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery / Xiaoyan Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkIntegrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images / Wen Dai in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
PermalinkIntegration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkSea-land segmentation using deep learning techniques for Landsat-8 OLI imagery / Ting Yang in Marine geodesy, Vol 43 n° 2 (March 2020)
PermalinkThe application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study / Yanan Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkUnsupervised extraction of urban features from airborne lidar data by using self-organizing maps / Alper Sen in Survey review, vol 52 n° 371 (March 2020)
PermalinkAutomated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkComputer vision-based framework for extracting tectonic lineaments from optical remote sensing data / Ehsan Farahbakhsh in International Journal of Remote Sensing IJRS, vol 41 n°5 (01 - 08 février 2020)
PermalinkThree-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering / Shangpeng Sun in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkCombining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods / Liheng Peng in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
Permalink