Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > segmentation d'image
segmentation d'imageVoir aussi |
Documents disponibles dans cette catégorie (580)


Etendre la recherche sur niveau(x) vers le bas
3D building reconstruction from single street view images using deep learning / Hui En Pang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
[article]
Titre : 3D building reconstruction from single street view images using deep learning Type de document : Article/Communication Auteurs : Hui En Pang, Auteur ; Filip Biljecki, Auteur Année de publication : 2022 Article en page(s) : n° 102859 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] empreinte
[Termes IGN] Helsinki
[Termes IGN] image Streetview
[Termes IGN] maillage
[Termes IGN] morphologie urbaine
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'imageNuméro de notice : A2022-553 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101160
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102859[article]A second-order attention network for glacial lake segmentation from remotely sensed imagery / Shidong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
![]()
[article]
Titre : A second-order attention network for glacial lake segmentation from remotely sensed imagery Type de document : Article/Communication Auteurs : Shidong Wang, Auteur ; Maria V. Peppa, Auteur ; Wen Xiao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 289 - 301 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] changement climatique
[Termes IGN] covariance
[Termes IGN] image Landsat-8
[Termes IGN] Inde
[Termes IGN] itération
[Termes IGN] lac glaciaire
[Termes IGN] réflectance de surface
[Termes IGN] segmentation d'image
[Termes IGN] tenseurRésumé : (auteur) Climate change is increasing the risk of glacial lake outburst floods (GLOFs) in many of the world’s most vulnerable and high mountain regions. Simultaneously, remote sensing technologies now facilitate continuous monitoring of glacial lake evolution around the globe, although accurate and reliable automated glacial lake mapping from satellite data remains challenging. In this study, a Second-order Attention Network (SoAN) is devised for the automated segmentation of lakes from satellite imagery. In particular, a novel Second-order Attention Module (SoAM) is proposed to capture the long-range spatial dependencies and establish channel attention derived from the covariance representations of local features. Furthermore, as the dimensions of the input and output tensors are identical and it simply relies on matrix calculations, the proposed SoAM can be embedded into different positions of a given architecture while maintaining similar reference speed. The designed network is implemented on Landsat-8 imagery and outputs are compared against representative deep learning models, demonstrating improved results with a Dice of 81.02% and a F2 Score of 85.17%. Numéro de notice : A2022-470 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.05.007 Date de publication en ligne : 29/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.05.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100814
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 289 - 301[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Human cognition based framework for detecting roads from remote sensing images / Naveen Chandra in Geocarto international, vol 37 n° 8 ([22/06/2022])
![]()
[article]
Titre : Human cognition based framework for detecting roads from remote sensing images Type de document : Article/Communication Auteurs : Naveen Chandra, Auteur ; Himadri Vaidya, Auteur ; Jayanta Kumar Ghosh, Auteur Année de publication : 2022 Article en page(s) : pp 2365 - 2384 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image numérique
[Termes IGN] classification
[Termes IGN] cognition
[Termes IGN] extraction du réseau routier
[Termes IGN] image à haute résolution
[Termes IGN] interprétation (psychologie)
[Termes IGN] représentation cognitive
[Termes IGN] segmentation d'imageRésumé : (auteur) The complete extraction of roads from remote sensing images (RSIs) is an emergent area of research. It is an interesting topic as it involves diverse procedures for detecting roads. The detection of roads using high-resolution-satellite-images (HRSi) is challenging because of the occurrence of several types of noise such as bridges, vehicles, and crossing lines, etc. The extraction of the correct road network is crucial due to its broad range of applications such as transportation, map updating, navigation, and generating maps. Therefore our paper concentrates on understanding the cognitive processes, reasoning, and knowledge used by the analyst through visual cognition while performing the task of road detection from HRSi. The novel process is performed emulating human cognition within cognitive task analysis which is carried out in five different stages. The suggested cognitive procedure for road extraction is validated with the fifteen HRSi of four different land cover patterns specifically developed-sub-urban (DSUr), developed-urban (DUr), emerging-sub-urban (ESUr), and emerging-urban (EUr). The experimental results and the comparative assessment prove the impact of the presented cognitive method. Numéro de notice : A2022-506 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1810330 Date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1810330 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101027
in Geocarto international > vol 37 n° 8 [22/06/2022] . - pp 2365 - 2384[article]Évaluation de la qualité de modèles 3D issus de nuages de points / Tania Landes in XYZ, n° 171 (juin 2022)
[article]
Titre : Évaluation de la qualité de modèles 3D issus de nuages de points Type de document : Article/Communication Auteurs : Tania Landes, Auteur Année de publication : 2022 Article en page(s) : pp 14 - 24 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] maquette numérique
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] qualité du modèle
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (Auteur) La modélisation 3D répond à la fois à un enjeu économique, mais aussi environnemental, que ce soit à l’échelle du bâtiment ou de la ville. Ces dix dernières années, les techniques d’acquisition ont considérablement évolué du point de vue de leur rapidité, du volume de données à gérer, de l’hétérogénéité des informations acquises par les systèmes multicapteurs, de même que des méthodes de traitement des données. De nouveaux processus sont nés de ces bouleversements, comme le processus “scan-to-BIM”, caractérisant les étapes menant du nuage de points à une maquette numérique intelligente. En adoptant la maquette numérique, intégrée dans un processus collaboratif BIM (Building Information Modeling), les acteurs du bâtiment sont en mesure d’effectuer des simulations et de réduire, en plus des coûts, l’impact environnemental lié aux interventions sur le bâtiment, tout au long de son cycle de vie. En pratique, pour aboutir à une maquette numérique intelligente du bâtiment à partir d’un relevé de l’existant, de nombreux verrous technologiques sont à lever. Dans ce contexte, j’ai eu l’occasion d’encadrer divers travaux de recherches portant sur les thématiques allant de l’acquisition de données 3D (généralement sous forme de nuages de points 3D) à leur traitement, jusqu’à la production de la maquette numérique comme résumé dans le numéro 167 de la revue XYZ [Landes, 2021]. Dans la continuité de ce résumé, et comme l’annonçait la conclusion de ce dernier, cette suite se concentre sur la question de la qualité des livrables 3D détaillés dans [Landes, 2020]. Numéro de notice : A2022-521 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101066
in XYZ > n° 171 (juin 2022) . - pp 14 - 24[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 112-2022022 SL Revue Centre de documentation Revues en salle En circulation
Exclu du prêt112-2022021 SL Revue Centre de documentation Revues en salle Disponible Graph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
![]()
[article]
Titre : Graph-based block-level urban change detection using Sentinel-2 time series Type de document : Article/Communication Auteurs : Nan Wang, Auteur ; Wei Li, Auteur ; Ran Tao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112993 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multivariée
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] détection de changement
[Termes IGN] espace vert
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (auteur) Remote sensing technology has been frequently used to obtain information on changes in urban land cover because of its vast spatial coverage and timeliness of observation. Block-level change detection with high temporal resolution image data provides fine detail of urban changes, is suitable for urban management, and has gradually received widespread attention. High-dimensional features are required to express the heterogeneous structure of the blocks. High-dimensional high-frequency time series, namely, multivariate time series, are formed by arranging high-dimensional features chronologically. Classic change detection methods treat multivariate time series as univariate time series one by one. Few studies have analyzed the change in a multivariate time series by considering all variables as an entirety. Therefore, a graph-based segmentation for multivariate time series algorithm (MTS-GS) is proposed in this paper. Specifically, 1) we construct a similarity matrix to explore the changing patterns of multivariate time series for seasonal change, trend change, abrupt change, and noise disturbance; 2) a multivariate time series graph is defined based on the changing patterns; and 3) the corresponding graph segmentation algorithm is proposed in the paper to detect the abrupt and trend changes under noise and seasonal disturbances. Sentinel-2 images of the rapidly developing third-tier city of Luoyang, Henan province, China, are adopted to validate the algorithm. The F1-score in the spatial domain is 84.1%; the producer's and the user's accuracy in the temporal dimension are 81.8% and 80.1%, respectively. Seven change types are defined and extracted, showing the development pattern and the efficiency of land use in the city. Furthermore, the proposed MTS-GS can be used for pixel-level change detection and performs well under various time intervals and cloud covers. Numéro de notice : A2022-399 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112993 Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112993 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100699
in Remote sensing of environment > vol 274 (June 2022) . - n° 112993[article]Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)
PermalinkThe promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning / Elie Morin in Ecological indicators, vol 139 (June 2022)
Permalink3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation / Heyang Thomas Li in The Visual Computer, vol 38 n° 5 (May 2022)
PermalinkMulti-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkGraph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
PermalinkParcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data / Yanyan Wang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkÉvaluation des apports de l’apprentissage profond au sein d’un service dédié à la numérisation du patrimoine / Maxime Mérizette in XYZ, n° 170 (mars 2022)
PermalinkExtraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
PermalinkSynergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/03/2022])
PermalinkUltrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
Permalink