Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > SIFT (algorithme)
SIFT (algorithme)Synonyme(s)algorithme de LoweVoir aussi |
Documents disponibles dans cette catégorie (44)



Etendre la recherche sur niveau(x) vers le bas
Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features / Bai Zhu in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
![]()
[article]
Titre : Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features Type de document : Article/Communication Auteurs : Bai Zhu, Auteur ; Yuanxin Ye, Auteur ; Liang Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 129 - 147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] correction géométrique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] élément d'orientation externe
[Termes IGN] enregistrement de données
[Termes IGN] filtre de Gabor
[Termes IGN] image aérienne
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) Co-registration of aerial imagery and Light Detection and Ranging (LiDAR) data is quite challenging because the different imaging mechanisms produce significant geometric and radiometric distortions between the two multimodal data sources. To address this problem, we propose a robust and effective coarse-to-fine registration method that is conducted in two stages utilizing spatial constraints and Gabor structural features. In the first stage, the LiDAR point cloud data is transformed into an intensity map that is used as the reference image. Then, coarse registration is completed by designing a partition-based Features from Accelerated Segment Test (FAST) operator to extract the uniformly distributed interest points in the aerial images and thereafter performing a local geometric correction based on the collinearity equations using the exterior orientation parameters (EoPs). The coarse registration aims to provide a reliable spatial geometry relationship for the subsequent fine registration and is designed to eliminate rotation and scale changes, as well as making only a few translation differences exist between the images. In the second stage, a novel feature descriptor called multi-Scale and multi-Directional Features of odd Gabor (SDFG) is first built to capture the multi-scale and multi-directional structural properties of the images. Then, the three-dimensional (3D) phase correlation (PC) of the SDFG descriptor is established to detect the control points (CPs) between the aerial and LiDAR intensity image in the frequency domain, where the image matching is accelerated by the 3D Fast Fourier Transform (FFT) technique. Finally, the obtained CPs not only are employed to refine the EoPs, but also are used to achieve the fine registration of the aerial images and LiDAR data. We conduct experiments to verify the robustness of the proposed registration method using three sets of aerial images and LiDAR data with different scene coverage. Experimental results show that the proposed method is robust to geometric distortions and radiometric changes. Moreover, it achieves the registration accuracy of less than 2 pixels for all cases, which outperforms the current four state-of-the-art methods, demonstrating its superior registration performance. Numéro de notice : A2021-773 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.09.010 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.09.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98830
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 129 - 147[article]An automatic workflow for orientation of historical images with large radiometric and geometric differences / Ferdinand Maiwald in Photogrammetric record, vol 36 n° 174 (June 2021)
![]()
[article]
Titre : An automatic workflow for orientation of historical images with large radiometric and geometric differences Type de document : Article/Communication Auteurs : Ferdinand Maiwald, Auteur ; Hans-Gerd Maas, Auteur Année de publication : 2021 Article en page(s) : pp 77 - 103 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement de formes
[Termes IGN] artefact
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image ancienne
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] réalité augmentée
[Termes IGN] réalité virtuelle
[Termes IGN] reconstruction 3D
[Termes IGN] scène urbaine
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) This contribution proposes a workflow for a completely automatic orientation of historical terrestrial urban images. Automatic structure from motion (SfM) software packages often fail when applied to historical image pairs due to large radiometric and geometric differences causing challenges with feature extraction and reliable matching. As an innovative initialising step, the proposed method uses the neural network D2-Net for feature extraction and Lowe’s mutual nearest neighbour matcher. The principal distance for every camera is estimated using vanishing point detection. The results were compared to three state-of-the-art SfM workflows (Agisoft Metashape, Meshroom and COLMAP) with the proposed workflow outperforming the other SfM tools. The resulting camera orientation data are planned to be imported into a web and virtual/augmented reality (VR/AR) application for the purpose of knowledge transfer in cultural heritage. Numéro de notice : A2021-471 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12363 Date de publication en ligne : 06/06/2021 En ligne : https://doi.org/10.1111/phor.12363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97925
in Photogrammetric record > vol 36 n° 174 (June 2021) . - pp 77 - 103[article]Research on feature extraction method of indoor visual positioning image based on area division of foreground and background / Ping Zheng in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
![]()
[article]
Titre : Research on feature extraction method of indoor visual positioning image based on area division of foreground and background Type de document : Article/Communication Auteurs : Ping Zheng, Auteur ; Danyang Qin, Auteur ; Bing Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 402 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] logiciel libre
[Termes IGN] positionnement en intérieur
[Termes IGN] Ransac (algorithme)
[Termes IGN] SIFT (algorithme)
[Termes IGN] SURF (algorithme)Résumé : (auteur) In the process of indoor visual positioning and navigation, difficult points often exist in corridors, stairwells, and other scenes that contain large areas of white walls, strong consistent background, and sparse feature points. Aiming at the problem of positioning and navigation in the real physical world where the walls with sparse feature points are difficult to be filled with pictures, this paper designs a feature extraction method, ARAC (Adaptive Region Adjustment based on Consistency) using Free and Open-Source Software and tools. It divides the image into foreground and background and extracts their features respectively, to achieve not only retain positioning information but also focus more energy on the foreground area which is favourable for navigation. In the test phase, under the combined conditions of illumination, scale and affine changes, the feature matching maps by the feature extraction algorithm proposed in this paper are compared with those by SIFT and SURF. Experiments show that the number of correctly matched feature pairs obtained by ARAC is better than SIFT and SURF, and whose time of feature extraction and matching is comparable to SURF, which verifies the accuracy and efficiency of the ARAC feature extraction method. Numéro de notice : A2021-518 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi10060402 Date de publication en ligne : 11/06/2021 En ligne : https://doi.org/10.3390/ijgi10060402 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97940
in ISPRS International journal of geo-information > vol 10 n° 6 (June 2021) . - n° 402[article]Visual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
![]()
[article]
Titre : Visual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors Type de document : Article/Communication Auteurs : Longyu Zhang, Auteur ; Hao Xia, Auteur ; Qingjun Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 195 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par nuées dynamiques
[Termes IGN] estimation de pose
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] modélisation 3D
[Termes IGN] positionnement en intérieur
[Termes IGN] Ransac (algorithme)
[Termes IGN] scène intérieure
[Termes IGN] SIFT (algorithme)
[Termes IGN] SURF (algorithme)
[Termes IGN] téléphone intelligent
[Termes IGN] vision par ordinateurRésumé : (auteur) Positioning information has become one of the most important information for processing and displaying on smart mobile devices. In this paper, we propose a visual positioning method using RGB-D image on smart mobile devices. Firstly, the pose of each image in the training set is calculated through feature extraction and description, image registration, and pose map optimization. Then, in the image retrieval stage, the training set and the query set are clustered to generate the vector of local aggregated descriptors (VLAD) description vector. In order to overcome the problem that the description vector loses the image color information and improve the retrieval accuracy under different lighting conditions, the opponent color information and depth information are added to the description vector for retrieval. Finally, using the point cloud corresponding to the retrieval result image and its pose, the pose of the retrieved image is calculated by perspective-n-point (PnP) method. The results of indoor scene positioning under different illumination conditions show that the proposed method not only improves the positioning accuracy compared with the original VLAD and ORB-SLAM2, but also has high computational efficiency. Numéro de notice : A2021-481 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10040195 Date de publication en ligne : 24/03/2021 En ligne : https://doi.org/10.3390/ijgi10040195 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97425
in ISPRS International journal of geo-information > vol 10 n° 4 (April 2021) . - n° 195[article]Automated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)
![]()
[article]
Titre : Automated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images Type de document : Article/Communication Auteurs : Luigi Parente, Auteur ; Jim H. Chandler, Auteur ; Neil Dixon, Auteur Année de publication : 2021 Article en page(s) : pp 12 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] algorithme ICP
[Termes IGN] alignement
[Termes IGN] Angleterre
[Termes IGN] détection de changement
[Termes IGN] données multisources
[Termes IGN] données multitemporelles
[Termes IGN] géoréférencement direct
[Termes IGN] image aérienne oblique
[Termes IGN] image captée par drone
[Termes IGN] image oblique
[Termes IGN] image terrestre
[Termes IGN] modèle stéréoscopique
[Termes IGN] modélisation 3D
[Termes IGN] point d'appui
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) Accurate alignment of 3D models is critical for valid change‐detection analysis from multitemporal photogrammetric datasets. This paper assesses an automated registration strategy which uses the scale‐invariant feature transform (SIFT) algorithm implemented in modern photogrammetric software. This registration solution, also known as “Time‐SIFT”, was tested at two study sites featuring vertical surfaces, including a sea cliff (~500 m2) and a quarry face (~50 000 m2). Tests demonstrated that the investigated registration strategy can achieve accurate alignments between multitemporal point clouds even when using multisource and multi‐perspective data, captured across widely varying spatial and temporal scales and under a range of weather and illumination conditions. The combination of the Time‐SIFT approach with an ICP algorithm produced moderate improvements in the alignment. Furthermore, the use of an innovative direct georeferencing technique, which used the tracking feature of a robotic total station, allowed for accurate georectification of 3D models. Numéro de notice : A2021-280 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1111/phor.12346 Date de publication en ligne : 06/01/2021 En ligne : https://doi.org/10.1111/phor.12346 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97377
in Photogrammetric record > vol 36 n° 173 (March 2021) . - pp 12 - 35[article]Feature detection and description for image matching: from hand-crafted design to deep learning / Lin Chen in Geo-spatial Information Science, vol 24 n° 1 (March 2021)
PermalinkImproving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / Roholah Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkGuided feature matching for multi-epoch historical image blocks pose estimation / Lulin Zhang in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkStructure from motion for complex image sets / Mario Michelini in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkAn Illumination Insensitive descriptor combining the CSLBP features for street view images in augmented reality: experimental studies / Zejun Xiang in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkIndoor positioning using PnP problem on mobile phone images / Hana Kubickova in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkReducing shadow effects on the co-registration of aerial image pairs / Matthew Plummer in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkPré-localisation des données pour la modélisation 3D de tunnels : développements et évaluations / Christophe Heinkelé in Revue Française de Photogrammétrie et de Télédétection, n° 221 (novembre 2019)
PermalinkFusion of thermal imagery with point clouds for building façade thermal attribute mapping / Dong Lin in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
PermalinkStructure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation / Xin Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
Permalink