Descripteur
Termes IGN > mathématiques > statistique mathématique
statistique mathématique
Commentaire :
>>
biométrie,
échantillonnage (statistique), probabilité, statistique. >>Terme(s) spécifique(s) : analyse de régression, analyse de variance, analyse des données, analyse multivariée, analyse séquentielle, calcul d'erreur, carré latin, corrélation (statistique), efficacité asymptotique (statistique), fonction pseudo-aléatoire, loi des grands nombres, modèle linéaire (statistique), modèle non linéaire (statistique), moindre carré, physique statistique, plan d'expérience, rang et sélection (statistique), rupture (statistique), SAS (logiciel), série chronologique, statistique non paramétrique, statistique robuste, tableau de contingence, test d'hypothèses (statistique), statistique stellaire. Equiv. LCSH : Mathematical statistics. Domaine(s) : 510. |
Documents disponibles dans cette catégorie (6846)


Etendre la recherche sur niveau(x) vers le bas
Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model / Zensheng Wang in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
![]()
[article]
Titre : Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model Type de document : Article/Communication Auteurs : Zensheng Wang, Auteur ; Feidong Lu, Auteur ; Zhaohui Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 339 - 359 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] approche hiérarchique
[Termes IGN] classification bayesienne
[Termes IGN] dynamique spatiale
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] Shenzhen
[Termes IGN] téléphonie mobile
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Understanding the relationship between mixed land use and urban vibrancy is vital in advanced urban planning applications. This study presents a Bayesian spatially varying coefficient (SVC) model to explore the spatially nonstationary relationship between mixed land use and urban vibrancy after controlling for other factors. We first use the convolutional conditional autoregressive prior to accommodate the ecological bias resulting from unobserved confounders. Then we develop our approach in the case of a single predictor to allow the spatially varying coefficient process. We further introduce a type of the Bayesian SVC model that considers the stratified heterogeneity of the outcome, allowing the coefficients to simultaneously vary at the local and subregion level. We illustrate the proposed model by conducting a case study in Shenzhen using mobile phone data, an officially registered point-of-interest (POI) dataset, and several supplementary datasets. The model evaluation results show that including spatially unstructured and structured component combinations can improve the model's fitness and predictive ability; additionally, considering spatial stratified heterogeneity can further enhance the model's performance. Our findings provide an alternative for measuring the variable local-scale association between mixed-use and urban vibrancy and offer new insights that broaden the fields of environmental science and spatial statistics. Numéro de notice : A2023-057 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2117363 En ligne : https://doi.org/10.1080/13658816.2022.2117363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102393
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 339 - 359[article]Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping / Luc Baudoux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
![]()
[article]
Titre : Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet
, Auteur
Année de publication : 2023 Projets : AI4GEO / Article en page(s) : pp ? Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] harmonisation des données
[Termes IGN] nomenclature
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Land-use/land-cover (LULC) maps describe the Earth’s surface with discrete classes at a specific spatial resolution. The chosen classes and resolution highly depend on peculiar uses, making it mandatory to develop methods to adapt these characteristics for a large range of applications. Recently, a convolutional neural network (CNN)-based method was introduced to take into account both spatial and geographical context to translate a LULC map into another one. However, this model only works for two maps: one source and one target. Inspired by natural language translation using multiple-language models, this article explores how to translate one LULC map into several targets with distinct nomenclatures and spatial resolutions. We first propose a new data set based on six open access LULC maps to train our CNN-based encoder-decoder framework. We then apply such a framework to convert each of these six maps into each of the others using our Multi-Landcover Translation network (MLCT-Net). Extensive experiments are conducted at a country scale (namely France). The results reveal that our MLCT-Net outperforms its semantic counterparts and gives on par results with mono-LULC models when evaluated on areas similar to those used for training. Furthermore, it outperforms the mono-LULC models when applied to totally new landscapes. Numéro de notice : A2023-075 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2120996 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2120996 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101797
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp ?[article]Seismic deformation in the Adriatic Sea region / B. Orecchio in Journal of geodynamics, vol 155 (March 2023)
![]()
[article]
Titre : Seismic deformation in the Adriatic Sea region Type de document : Article/Communication Auteurs : B. Orecchio, Auteur ; D. Presti, Auteur ; S. Scolaro, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n°101956 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] Adriatique, mer
[Termes IGN] déformation de la croute terrestre
[Termes IGN] faille géologique
[Termes IGN] forme d'onde
[Termes IGN] histogramme
[Termes IGN] inversion
[Termes IGN] sismologie
[Termes IGN] surveillance géologique
[Termes IGN] tectonique des plaquesRésumé : (auteur) We present an overall analysis of the recent seismic activity occurred in the Adriatic Sea region, a strongly debated sector of the Mediterranean area, where several authors have proposed different models of plate configuration and kinematics. In the past, seismic investigations of this marine area have been strongly hampered by non-optimal network geometries, but data quality increase and recent methodological improvements lay the groundwork to attempt more accurate analyses including proper evaluations of result reliability. On these grounds, we investigated the seismic activity of the last decades by means of new hypocenter locations, waveform inversion focal mechanisms and seismogenic stress fields. We used the Bayloc non-linear probabilistic algorithm to compute hypocenter locations for the most relevant seismic sequences by carefully evaluating location quality and seismolineaments reliability. We also provided an updated database of waveform inversion focal mechanisms including original solutions estimated by applying the waveform inversion method Cut And Paste and data available from official catalogs. Then, focal mechanism solutions have been used to estimate seismogenic stress fields through different inversion algorithms. Seismic results indicate a relevant degree of fragmentation and different patterns of deformation in the Central Adriatic region. In particular, our analyses depicted two NW-SE oriented, adjacent volumes: (i) a pure compressive domain with NNE-trending axis of maximum compression characterizes the northeastern volume where the seismic activity occurs on W-to-NW oriented seismic sources; (ii) a transpressive domain with NW-trending axis of maximum compression characterizes the southwestern sector where thrust faulting preferentially occurs on ENE-to-NE oriented planes and strike-slip faulting on E-W ones. Joint evaluation of seismic findings of the present study and kinematic models proposed in the literature indicates just in the Central Adriatic region the presence of a broad deformation zone, accommodating a still evolving fragmentation of the Adriatic domain in two blocks rotating in opposite directions. On these grounds, the obtained results not only furnish new seismological evidence supporting the "two-blocks model" proposed by previous authors, but they also provide additional constraints, useful for better understanding and modeling the seismotectonic processes occurring in the Adriatic region. Numéro de notice : A2023-051 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.jog.2022.101956 Date de publication en ligne : 30/11/2022 En ligne : https://doi.org/10.1016/j.jog.2022.101956 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102379
in Journal of geodynamics > vol 155 (March 2023) . - n°101956[article]The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
![]()
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] modèle numérique de surface
[Termes IGN] paysage forestier
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]A spatial distribution: Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil / Jiawei Liu in Science of the total environment, vol 859 n° 1 (February 2023)
![]()
[article]
Titre : A spatial distribution: Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil Type de document : Article/Communication Auteurs : Jiawei Liu, Auteur ; Hou Kang, Auteur ; Wendong Tao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 160112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] autocorrélation spatiale
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] métal lourd
[Termes IGN] pollution des sols
[Termes IGN] risque de pollution
[Termes IGN] traçabilitéRésumé : (auteur) With the rapid development of urbanization, heavy metal pollution of soil has received great attention. Over-enrichment of heavy metals in soil may endanger human health. Assessing soil pollution and identifying potential sources of heavy metals are crucial for prevention and control of soil heavy metal pollution. This study introduced a spatial distribution - principal component analysis (SD-PCA) model that couples the spatial attributes of soil pollution with linear data transformation by the eigenvector-based principal component analysis. By evaluating soil pollution in the spatial dimension it identifies the potential sources of heavy metals more easily. In this study, soil contamination by eight heavy metals was investigated in the Lintong District, a typical multi-source urban area in Northwest China. In general, the soils in the study area were lightly contaminated by Cr and Pb. Pearson correlation analysis showed that Cr was negatively correlated with other heavy metals, whereas the spatial autocorrelation analysis revealed that there was strong association in the spatial distribution of eight heavy metals. The aggregation forms were more varied and the correlation between Cr contamination and other heavy metals was lower. The aggregation forms of Mn and Cu, Zn and Pb, on the other hand, were remarkably comparable. Agriculture was the largest pollution source, contributing 65.5 % to soil pollution, which was caused by the superposition of multiple heavy metals. Additionally, traffic and natural pollution sources contributed 17.9 % and 11.1 %, respectively. The ability of this model to track pollution of heavy metals has important practical significance for the assessment and control of multi-source soil pollution. Numéro de notice : A2023-009 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scitotenv.2022.160112 Date de publication en ligne : 11/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.160112 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102115
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 160112[article]Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network / Jingan Wu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
PermalinkLarge-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
PermalinkPSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
PermalinkStochastic multicriteria acceptability analysis as a forest management priority mapping approach based on airborne laser scanning and field inventory data / Parvez Rana in Landscape and Urban Planning, vol 230 (February 2023)
PermalinkTopology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds / Xin Xu in International journal of applied Earth observation and geoinformation, vol 116 (February 2023)
PermalinkA CNN based approach for the point-light photometric stereo problem / Fotios Logothetis in International journal of computer vision, vol 131 n° 1 (January 2023)
PermalinkA comparative assessment of the statistical methods based on urban population density estimation / Merve Yılmaz in Geocarto international, vol 38 n° 1 ([01/01/2023])
PermalinkDecadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data / Thuong V. Tran in GIScience and remote sensing, vol 60 n° 1 (2023)
PermalinkDecision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
PermalinkEstablishing a high-precision real-time ZTD model of China with GPS and ERA5 historical data and its application in PPP / Pengfei Xia in GPS solutions, vol 27 n° 1 (January 2023)
Permalink