Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > analyse de données > analyse multivariée
analyse multivariéeVoir aussi |


Etendre la recherche sur niveau(x) vers le bas
A heuristic approach to the generalization of complex building groups in urban villages / Wenhao Yu in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : A heuristic approach to the generalization of complex building groups in urban villages Type de document : Article/Communication Auteurs : Wenhao Yu, Auteur ; Qi Zhou, Auteur ; Rong Zhao, Auteur Année de publication : 2021 Article en page(s) : pp 155 - 179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] généralisation du bâti
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] représentation multiple
[Termes descripteurs IGN] triangulation de Delaunay
[Termes descripteurs IGN] zone urbaine
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The generalization of building footprints acts as the basis of multi-scale mapping. Most of the previous studies focus on the generalization of regular building clusters within a wide neighbourhood, but only few has concerned about the generalization of cluttered building clusters within the narrow space such as urban village. The buildings in urban villages show special characteristics in terms of individual properties and group properties, and thus their map generalization processes are often limited. This study proposes a framework to generalize the cluttered building clusters that allows for multi-scale mapping. It first adopts a heuristic method to group adjacent buildings based on the Delaunay triangulation model and then aggregates and simplifies each building group separately. Given that the aggregated buildings in urban villages often show cluttered alignments, our method further trims the jagged boundaries of building footprints by extracting the gap space between neighbouring buildings from the Delaunay triangulation model. Numéro de notice : A2021-084 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.159046 date de publication en ligne : 25/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1590463 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96843
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 155 - 179[article]Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis / Marta Sapena in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis Type de document : Article/Communication Auteurs : Marta Sapena, Auteur ; Luis Angel Ruiz, Auteur Année de publication : 2021 Article en page(s) : pp 375 - 396 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] distance euclidienne
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] pondérationRésumé : (auteur) The spatial pattern of urban growth determines how the physical, socio-economic and environmental characteristics of urban areas change over time. Monitoring urban areas for early identification of spatial patterns facilitates assuring their sustainable growth. In this paper, we assess the use of spatio-temporal metrics from land-use/land-cover (LULC) maps to identify growth patterns. We applied LULC change models to simulate different scenarios of urban growth spatial patterns (i.e., expansion, compact, dispersed, road-based and leapfrog) on various baseline urban forms (i.e., monocentric, polycentric, sprawl and linear). Then, we computed the spatio-temporal metrics for the simulated scenarios, selected the most informative metrics by applying discriminant analysis and classified the growth patterns using clustering methods. Two metrics, Weighted mean expansion and Weighted Euclidean distance, which account for the densification, compactness and concentration of urban growth, were the most efficient for classifying the five growth patterns, despite the influence of the baseline urban form. These metrics have the potential to identify growth patterns for monitoring and evaluating the management of developing urban areas. Numéro de notice : A2021-040 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1817463 date de publication en ligne : 08/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1817463 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96752
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 375 - 396[article]Dynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs / Yang Bai in Computers & geosciences, vol 146 (January 2021)
![]()
[article]
Titre : Dynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs Type de document : Article/Communication Auteurs : Yang Bai, Auteur ; Maojin Tan, Auteur Année de publication : 2021 Article en page(s) : n° 104626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] puits de carbone
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] schisteRésumé : (auteur) The total organic carbon (TOC) content is of great significance to reflect the hydrocarbon-generation potential in shale reservoirs. The well logs were always used to predict the TOC content, but some linear regression methods do not match well with complex data. The neural network method can improve prediction accuracy, but it always generates unstable prediction models. A static committee machine can reduce errors and uncertainties by combining multiple learners, but the weight of integrating learners is difficult to determine. Therefore, a dynamic committee machine with fuzzy-c-means clustering (DCMF) was proposed to predict the TOC content. Experts in the DCMF include Elman neural network, extreme learning machine, and generalized regression neural network. The fuzzy-c-means clustering algorithm was used as the gate network to perform subtasks decomposition and weights calculation based on input data. The subtasks were used to train more adaptive TOC content prediction models, and the weights were transferred to the combiner to integrate all experts’ outputs into final results. The DCMF was applied in two wells located in the Jiumenchong formation in the Qiannan depression, China. The TOC prediction results using the DCMF method are more accurate than the linear regression method, three individual intelligent algorithms, and the static committee machine. The DCMF also provides a new method for weight calculation by mining potential information of input data. Numéro de notice : A2021-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2020.104626 date de publication en ligne : 17/10/2020 En ligne : https://doi.org/10.1016/j.cageo.2020.104626 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96512
in Computers & geosciences > vol 146 (January 2021) . - n° 104626[article]Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping Type de document : Article/Communication Auteurs : Mthembeni Mngadi, Auteur ; John Odindi, Auteur ; Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] Eucalyptus (genre)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] KwaZulu-Natal (Afrique du Sud)
[Termes descripteurs IGN] Pinus (genre)
[Termes descripteurs IGN] télédétection spatialeRésumé : (Auteur) The successful launch and operation of the Sentinel satellite platform has provided access to freely available remotely sensed data useful for commercial forest species discrimination. Sentinel – 1 (S1) with a synthetic aperture radar (SAR) sensor and Sentinel – 2 (S2) multi-spectral sensor with additional and strategically positioned bands offer great potential for providing reliable information for discriminating and mapping commercial forest species. In this study, we sought to determine the value of S1 and S2 data characteristics in discriminating and mapping commercial forest species. Using linear discriminant analysis (LDA) algorithm, S2 multi-spectral imagery showed an overall classification accuracy of 84% (kappa = 0.81), with bands such as the red-edge (703.9–740.2 nm), narrow near infrared (835.1–864.8 nm), and short wave infrared (1613.7–2202.4 nm) particularly influential in discriminating individual forest species stands. When Sentinel 2’s spectral wavebands were fused with Sentinel 1’s (SAR) VV and VH polarimetric modes, overall classification accuracies improved to 87% (kappa = 0.83) and 88% (kappa = 0.85), respectively. These findings demonstrate the value of combining Sentinel’s multispectral and SAR structural information characteristics in improving commercial forest species discrimination. These, in addition to the sensors free availability, higher spatial resolution and larger swath width, offer unprecedented opportunities for improved local and large scale commercial forest species discrimination and mapping. Numéro de notice : A2021-050 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585483 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585483 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96719
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 1 - 12[article]Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation Type de document : Article/Communication Auteurs : George Grekousis, Auteur Année de publication : 2021 Article en page(s) : pp 152 - 174 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] New York (Etats-Unis ; ville)
[Termes descripteurs IGN] optimisation par essaim de particules
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) Fuzzy geographically weighted clustering has been proposed as an approach for improving fuzzy c-means algorithm when applied to geodemographic analysis. This clustering method allows a spatial entity to belong to more than one cluster with varying degrees, namely, membership values. Although fuzzy geographically weighted clustering attempts to create geographically aware clusters, it partially fails to trace spatial dependence and heterogeneity because, as a global metric, the membership values are calculated across the entire set of spatial entities. Here we introduce the first local version of fuzzy geographically weighted clustering, ‘local fuzzy geographically weighted clustering.’ In local fuzzy geographically weighted clustering, the membership values of a spatial entity are updated only according to the membership values of the spatial entities within its neighborhood and not across the entire set of entities, as originally proposed by the global metric. Additionally, we apply particle swarm optimization meta-heuristic to overcome the random initialization problem regarding the fuzzy c-means algorithm. To evaluate our method we compare local fuzzy geographically weighted clustering to global fuzzy geographically weighted clustering using a cancer incident benchmark dataset for Manhattan, New York. The results show that local fuzzy geographically weighted clustering outperforms the global version in all experimental settings. Numéro de notice : A2021-022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808221 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808221 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96525
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 152 - 174[article]The spatial structure of socioeconomic disadvantage: a Bayesian multivariate spatial factor analysis / Matthew Quick in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkEmpirical assessment of road network resilience in natural hazards using crowdsourced traffic data / Yi Qiang in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkGroup diagrams for representing trajectories / Maike Buchin in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkSTME: An effective method for discovering spatiotemporal multi‐type clusters containing events with different densities / Chao Wang in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkA comparison of neighbourhood relations based on ordinary Delaunay diagrams and area Delaunay diagrams: an application to define the neighbourhood relations of buildings / Hiroyuki Usui in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkLearning-based hyperspectral imagery compression through generative neural networks / Chubo Deng in Remote sensing, vol 12 n° 21 (November 2020)
PermalinkA multi-scale representation model of polyline based on head/tail breaks / Pengcheng Liu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkCoupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones / Xun Liang in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkA framework for group converging pattern mining using spatiotemporal trajectories / Bin Zhao in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
PermalinkfusionImage: An R package for pan‐sharpening images in open source software / Fulgencio Cánovas‐García in Transactions in GIS, Vol 24 n° 5 (October 2020)
Permalink