Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > analyse de données > Ransac (algorithme)
Ransac (algorithme)Synonyme(s)RANdom SAmple Consensus |



Etendre la recherche sur niveau(x) vers le bas
Building extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
![]()
[article]
Titre : Building extraction from Lidar data using statistical methods Type de document : Article/Communication Auteurs : Haval Abdul-Jabbar Sadeq, Auteur Année de publication : 2021 Article en page(s) : pp 33 - 42 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) In this article, a straightforward, intuitive method for lidar data classification and building extraction, based on statistical analysis, is presented. The classification of the point cloud into ground and nonground is begun by individually testing each point within the point cloud using the statistical mean height. In this operation, various window sizes are specified, and the mean is obtained at each size. The points that are above the mean are saved and divided by the number of windows to obtain the proportion. Points are considered non-ground if their proportion is higher than the assigned threshold, and otherwise ground. An algorithm for classifying the obtained nonground point cloud into buildings and trees is also illustrated in this article. First the nonground points are labeled, then each label is tested individually. The process begins with segmenting each label. Then comes testing of whether each segment of points can be fitted within a specific plane. The label of the point cloud is considered a building if the number of segments considered as planes is larger than those considered as nonplanes; otherwise it is classified as a tree. Numéro de notice : A2021-055 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.14358/PERS.87.1.33 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96760
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 1 (January 2021) . - pp 33 - 42[article]Relation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Relation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Wu Bo, Auteur Année de publication : 2021 Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] CityGML
[Termes descripteurs IGN] contrainte géométrique
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] géomètrie algorithmique
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] reconstruction 3D du bâti
[Termes descripteurs IGN] relation topologique
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] ville intelligenteRésumé : (auteur) The complexity and variety of buildings and the defects of point cloud data are the main challenges faced by 3D urban reconstruction from point clouds, especially in metropolitan areas. In this paper, we developed a method that embeds multiple relations into a procedural modelling process for the automatic 3D reconstruction of buildings from photogrammetric point clouds. First, a hybrid tree of constructive solid geometry and boundary representation (CSG-BRep) was built to decompose the building bounding space into multiple polyhedral cells based on geometric-relation constraints. The cells that approximate the shapes of buildings were then selected based on topological-relation constraints and geometric building models were generated using a reconstructing CSG-BRep tree. Finally, different parts of buildings were retrieved from the CSG-BRep trees, and specific surface types were recognized to convert the building models into the City Geography Markup Language (CityGML) format. The point clouds of 105 buildings in a metropolitan area in Hong Kong were used to evaluate the performance of the proposed method. Compared with two existing methods, the proposed method performed the best in terms of robustness, regularity, and topological correctness. The CityGML building models enriched with semantic information were also compared with the manually digitized ground truth, and the high level of consistency between the results suggested that the produced models will be useful in smart city applications. Numéro de notice : A2021-078 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010129 date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.3390/rs13010129 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96820
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 13[article]Planar polygons detection in lidar scans based on sensor topology enhanced Ransac / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
![]()
[article]
Titre : Planar polygons detection in lidar scans based on sensor topology enhanced Ransac Type de document : Article/Communication Auteurs : Stéphane Guinard , Auteur ; Zoumana Mallé, Auteur ; Oussama Ennafii
, Auteur ; Pascal Monasse, Auteur ; Bruno Vallet
, Auteur
Année de publication : 2020 Projets : Biom / Vallet, Bruno Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 343 - 350 Note générale : biblographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] polygone
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] segmentation par croissance de régions
[Termes descripteurs IGN] topologie capteur
[Termes descripteurs IGN] traitement de nuage de points
[Termes descripteurs IGN] transformation de HoughRésumé : (auteur) Detecting planar structures in point clouds is a very central step of the point cloud processing pipeline as many Lidar scans, in particular in anthropic environments, present such planar structures. Many improvements have been proposed to RANSAC and the Hough transform, the two major types of plane detection methods. An important limitation however is that these methods detect planes running across the whole scene instead of more localized planar patches. Moreover, they do not exploit the sensor information that often comes with Lidar point cloud (sensor topology and optical center position in particular). In this paper we address both issues: we aim at detecting planar polygons that have a limited spatial extent, and we exploit sensor topology. The latter is used to enhance a RANSAC framework on two aspects: to make seed points selection more local and to define more compact sets of inliers through sensor space region growing. Numéro de notice : A2020-502 Affiliation des auteurs : LaSTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-343-2020 date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-343-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95643
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-2 (August 2020) . - pp 343 - 350[article]Delineating minor landslide displacements using GPS and terrestrial laser scanning-derived terrain surfaces and trees: a case study of the Slumgullion landslide, Lake City, Colorado / Jin Wang in Survey review, vol 52 n° 372 (May 2020)
![]()
[article]
Titre : Delineating minor landslide displacements using GPS and terrestrial laser scanning-derived terrain surfaces and trees: a case study of the Slumgullion landslide, Lake City, Colorado Type de document : Article/Communication Auteurs : Jin Wang, Auteur ; Duo Wang, Auteur ; Shengqi Liu, Auteur ; Boyu Jia, Auteur Année de publication : 2020 Article en page(s) : pp 215 - 223 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme ICP
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] Colorado (Etats-Unis)
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] télémétrie laser terrestreRésumé : (Auteur) Multi-temporal high-density terrestrial laser scanning (TLS) datasets are processed to delineating possible movements from terrain surfaces and trees. Terrain surface movements are estimated with the help of segmentation and random sample consensus (RANSAC) algorithm. Tree movements are interpreted by iterative closest point (ICP) solved translations and rotations of tree point clouds. The capabilities of the proposed methodology were tested using a case study of the Slumgullion landslide, where the trees without clear trunks cover the terrain surfaces. The displacements from the terrain surfaces and trees are similar with the results observed using our global positioning system (GPS) and historic results. Numéro de notice : A2020-177 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2018.1558580 date de publication en ligne : 25/12/2018 En ligne : https://doi.org/10.1080/00396265.2018.1558580 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94835
in Survey review > vol 52 n° 372 (May 2020) . - pp 215 - 223[article]An improved RANSAC algorithm for extracting roof planes from airborne lidar data / Sibel Canaz Sevgen in Photogrammetric record, vol 35 n° 169 (March 2020)
![]()
[article]
Titre : An improved RANSAC algorithm for extracting roof planes from airborne lidar data Type de document : Article/Communication Auteurs : Sibel Canaz Sevgen, Auteur ; Fevzi Karsli, Auteur Année de publication : 2020 Article en page(s) : pp 40 - 57 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Algorithmique
[Termes descripteurs IGN] bord décollé (toit)
[Termes descripteurs IGN] contrôle qualité
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] segmentation par croissance de régions
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) The extraction of building roof planes from lidar data has become a popular research topic with random sample consensus (RANSAC) being one of the most commonly adopted algorithms. RANSAC extracts full planes, which is problematic when there are other points outside the plane boundary but within the plane space. This study proposes an improved RANSAC (I‐RANSAC) algorithm by removing points that do not belong to the roof plane. I‐RANSAC selects a random point from the extracted roof plane and then searches for its neighbours within a given threshold to identify and remove outliers. The new algorithm was tested with 14 buildings from two datasets, where quality control measures showed significant improvement over standard RANSAC. Numéro de notice : A2020-131 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Numéro de périodique nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12296 date de publication en ligne : 13/11/2019 En ligne : https://doi.org/10.1111/phor.12296 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94815
in Photogrammetric record > vol 35 n° 169 (March 2020) . - pp 40 - 57[article]Reducing shadow effects on the co-registration of aerial image pairs / Matthew Plummer in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkAutomatic scale estimation of structure from motion based 3D models using laser scalers in underwater scenarios / Klemen Istenič in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkPiecewise-planar approximation of large 3D data as graph-structured optimization / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5 (May 2019)
PermalinkDetecting and characterizing downed dead wood using terrestrial laser scanning / Tuomas Yrttimaa in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
PermalinkFusion of thermal imagery with point clouds for building façade thermal attribute mapping / Dong Lin in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
PermalinkPairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets / Yusheng Xu in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
PermalinkMeasuring stem diameters with TLS in boreal forests by complementary fitting procedure / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
PermalinkStructure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation / Xin Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
PermalinkExtraction of building roof planes with stratified random sample consensus / André C. Carrilho in Photogrammetric record, vol 33 n° 163 (September 2018)
PermalinkThree-point-based solution for automated motion parameter estimation of a multi-camera indoor mapping system with planar motion constraint / Fangning He in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
Permalink