Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > analyse de données > segmentation
segmentationVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
A new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)
![]()
[article]
Titre : A new small area estimation algorithm to balance between statistical precision and scale Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Jean-Pierre Renaud, Auteur ; Ankit Sagar
, Auteur ; Olivier Bouriaud
, Auteur
Année de publication : 2021 Projets : LUE / , DIABOLO / Packalen, Tuula, ARBRE/CHM-era / Jolly, Anne Article en page(s) : n° 102303 Note générale : bibliographie
This research was funded by The French Environmental Management Agency (ADEME), grant number 16-60-C0007. The methods and algorithms for processing photogrammetric data were supported by DIABOLO project from the European Union’s Horizon 2020 research and innovation program under grant agreement No 633464, as well as CHM-ERA project from the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). Ankit Sagar received the financial support of the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, through the project Impact DeepSurf.Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] arbre BSP
[Termes descripteurs IGN] capital sur pied
[Termes descripteurs IGN] données auxiliaires
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] inventaire forestier national (données France)
[Termes descripteurs IGN] réduction d'échelle
[Termes descripteurs IGN] seuillage
[Termes descripteurs IGN] surface terrière
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Combining national forest inventory (NFI) data with auxiliary information allows downscaling and improving the precision of NFI estimates for small domains, where normally too few field plots are available to produce reliable estimates. In most situations, small domains represent administrative units that could greatly vary in size and forested area. In small and poorly sampled domains, the precision of estimates often drop below expected standards.
To tackle this issue, we introduce a downscaling algorithm generating the smallest possible groups of domains satisfying prescribed sampling density and estimation error. The binary space partitioning algorithm recursively divides the population of domains in two groups while the prescribed precision conditions are fulfilled.
The algorithm was tested on two major forest attributes (i.e. growing stock and basal area) in an area of 7,500 km2 dominated by hardwood forests in the centre of France. The estimation domains consisted in 157 municipalities. The field data included 819 NFI plots surveyed during a 5 years period. The auxiliary data consisted in 48 metrics derived from a forest map, photogrammetric models and Landsat images. A model-assisted framework was used for estimation. For each forest attribute, the best model was selected using a best-subset approach using a Bayesian Information Criteria. The retained models explained 58% and 41% of the observed variance for the growing stocks and basal areas respectively. The performance of the algorithm was evaluated using a minimum of 3 NFI points per domain and estimation errors varying from 10 to 50%.
For a target estimation error set to 10%, the algorithm led to a limited number of estimation domains ( The algorithm provides a flexible estimation framework for small area estimation. The key advantages of the approach are relying on its capacity to produce estimations based on a preselected precision threshold and to produce results over the whole area of interest, avoiding areas without any estimates. The algorithm could also be used on any kind of polygon layers (not only administrative ones), provided that the field sampling design enable estimation. This makes the proposed algorithm a convenient tool notably for decision makers and forest managers.Numéro de notice : A2021-067 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2021.102303 date de publication en ligne : 25/01/2021 En ligne : https://doi.org/10.1016/j.jag.2021.102303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96992
in International journal of applied Earth observation and geoinformation > vol 97 (May 2021) . - n° 102303[article]Fully convolutional neural network for impervious surface segmentation in mixed urban environment / Joseph McGlinchy in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
![]()
[article]
Titre : Fully convolutional neural network for impervious surface segmentation in mixed urban environment Type de document : Article/Communication Auteurs : Joseph McGlinchy, Auteur ; Brian Muller, Auteur ; Brian Johnson, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 117 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] Denver
[Termes descripteurs IGN] exactitude des données
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] surface imperméableRésumé : (Auteur) The urgency of creating appropriate, high-resolution data products such as impervious cover information has increased as cities face rapid growth as well as climate change and other environmental challenges. This work explores the use of fully convolutional neural networks (FCNNs )—specifically UNet with a ResNet-152 encoder—in mapping impervious surfaces at the pixel level from WorldView-2 in a mixed urban/residential environment. We investigate three-, four-, and eight-band multispectral inputs to the FCNN. Resulting maps are promising in both qualitative and quantitative assessment when compared to automated land use/land cover products. Accuracy was assessed by F1 and average precision (AP) scores, as well as receiver operating characteristic curves, with area under the curve (AUC ) used as an additional accuracy metric. The four-band model shows the highest average test-set accuracies (F1, AP, and AUC of 0.709, 0.82, and 0.807, respectively), with higher AP and AUC than the automated land use/land cover products, indicating the utility of the blue-green-red-infrared channels for the FCNN. Improved performance was seen in residential areas, with worse performance in more densely developed areas. Numéro de notice : A2021-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.2.117 date de publication en ligne : 01/02/2021 En ligne : https://doi.org/10.14358/PERS.87.2.117 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97045
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 2 (February 2021) . - pp 117 - 123[article]Hidden Markov map matching based on trajectory segmentation with heading homogeneity / Ge Cui in Geoinformatica [en ligne], vol 25 n° 1 (January 2021)
![]()
[article]
Titre : Hidden Markov map matching based on trajectory segmentation with heading homogeneity Type de document : Article/Communication Auteurs : Ge Cui, Auteur ; Wentao Bian, Auteur ; Xin Wang, Auteur Année de publication : 2021 Article en page(s) : pp 179 - 206 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] appariement de données localisées
[Termes descripteurs IGN] Hidden Markov Model (HMM)
[Termes descripteurs IGN] Map Matching
[Termes descripteurs IGN] réseau routier
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] trajectographie par GPS
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map matching is to locate GPS trajectories onto the road networks, which is an important preprocessing step for many applications based on GPS trajectories. Currently, hidden Markov model is one of the most widely used methods for map matching. However, both effectiveness and efficiency of conventional map matching methods based on hidden Markov model will decline in the dense road network, as the number of candidate road segments enormously increases around GPS point. To overcome the deficiency, this paper proposes a segment-based hidden Markov model for map matching. The proposed method first partitions GPS trajectory into several GPS sub-trajectories based on the heading homogeneity and length constraint; next, the candidate road segment sequences are searched out for each GPS sub-trajectory; last, GPS sub-trajectories and road segment sequences are matched in hidden Markov model, and the road segment sequences with the maximum probability is identified. A case study is conducted on a real GPS trajectory dataset, and the experiment result shows that the proposed method improves the effectiveness and efficiency of the conventional HMM map matching method. Numéro de notice : A2021-094 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00429-4 date de publication en ligne : 02/01/2021 En ligne : https://doi.org/10.1007/s10707-020-00429-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96934
in Geoinformatica [en ligne] > vol 25 n° 1 (January 2021) . - pp 179 - 206[article]Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation Type de document : Article/Communication Auteurs : George Grekousis, Auteur Année de publication : 2021 Article en page(s) : pp 152 - 174 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] New York (Etats-Unis ; ville)
[Termes descripteurs IGN] optimisation par essaim de particules
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) Fuzzy geographically weighted clustering has been proposed as an approach for improving fuzzy c-means algorithm when applied to geodemographic analysis. This clustering method allows a spatial entity to belong to more than one cluster with varying degrees, namely, membership values. Although fuzzy geographically weighted clustering attempts to create geographically aware clusters, it partially fails to trace spatial dependence and heterogeneity because, as a global metric, the membership values are calculated across the entire set of spatial entities. Here we introduce the first local version of fuzzy geographically weighted clustering, ‘local fuzzy geographically weighted clustering.’ In local fuzzy geographically weighted clustering, the membership values of a spatial entity are updated only according to the membership values of the spatial entities within its neighborhood and not across the entire set of entities, as originally proposed by the global metric. Additionally, we apply particle swarm optimization meta-heuristic to overcome the random initialization problem regarding the fuzzy c-means algorithm. To evaluate our method we compare local fuzzy geographically weighted clustering to global fuzzy geographically weighted clustering using a cancer incident benchmark dataset for Manhattan, New York. The results show that local fuzzy geographically weighted clustering outperforms the global version in all experimental settings. Numéro de notice : A2021-022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808221 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808221 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96525
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 152 - 174[article]A new segmentation method for the homogenisation of GNSS-derived IWV time-series / Annarosa Quarello in Journal of the Royal Statistical Society: Series C Applied Statistics, vol inconnu ([01/01/2021])
![]()
[article]
Titre : A new segmentation method for the homogenisation of GNSS-derived IWV time-series Type de document : Article/Communication Auteurs : Annarosa Quarello , Auteur ; Olivier Bock
, Auteur ; Emilie Lebarbier, Auteur
Année de publication : 2021 Projets : VEGA (LEFE/INSU) / Bock, Olivier Note générale : bibliographie
https://arxiv.org/pdf/2005.04683.pdfLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes descripteurs IGN] coordonnées GNSS
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] programmation dynamique
[Termes descripteurs IGN] R (langage)
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] station permanente
[Termes descripteurs IGN] teneur intégrée en vapeur d'eau
[Termes descripteurs IGN] variance
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) Homogenization is an important and crucial step to improve the usage of observational data for climate analysis. This work is motivated by the analysis of long series of GNSS Integrated Water Vapour (IWV) data which have not yet been used in this context. This paper proposes a novel segmentation method that integrates a periodic bias and a heterogeneous, monthly varying, variance. The method consists in estimating first the variance using a robust estimator and then estimating the segmentation and periodic bias iteratively. This strategy allows for the use of the dynamic programming algorithm that remains the most efficient exact algorithm to estimate the change-point positions. The statistical performance of the method is assessed through numerical experiments. An application to a real data set of 120 global GNSS stations is presented. The method is implemented in the R package GNSSseg that will be available on the CRAN. Numéro de notice : A2021-061 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Autre URL associée : vers HAL Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : https://arxiv.org/pdf/2005.04683.pdf Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96617
in Journal of the Royal Statistical Society: Series C Applied Statistics > vol inconnu [01/01/2021][article]Acquisition of weak GPS signals using wavelet-based de-noising methods / Mohaddeseh Sharie in Survey review, vol 52 n° 375 (November 2020)
PermalinkIndoor point cloud segmentation using iterative Gaussian mapping and improved model fitting / Bufan Zhao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkHierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds / Yongjun Wang in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
PermalinkRelevé 3D et classification de nuages de points de patrimoine bâti / Arnadi Murtiyoso in XYZ, n° 164 (septembre 2020)
PermalinkSemi-automated framework for generating cycling lane centerlines on roads with roadside barriers from noisy MLS data / Yang Ma in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkVehicle detection of multi-source remote sensing data using active fine-tuning network / Xin Wu in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkExtraction of urban built-up areas from nighttime lights using artificial neural network / Tingting Xu in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkRegionalization of flood magnitudes using the ecological attributes of watersheds / Bahman Jabbarian Amiri in Geocarto international, vol 35 n° 9 ([01/07/2020])
PermalinkAssessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using Landsat-8 data / Divyesh Varade in Geocarto international, vol 35 n° 6 ([01/05/2020])
PermalinkExploring the potential of deep learning segmentation for mountain roads generalisation / Azelle Courtial in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
Permalink